Suppr超能文献

使用非线性支持向量机分类器从脑部CT图像中进行基于区域的肿瘤分割。

A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier.

作者信息

Nanthagopal A Padma, Rajamony R Sukanesh

机构信息

Tiruchy Anna University, Tiruchy, India.

出版信息

J Med Eng Technol. 2012 Jul;36(5):271-7. doi: 10.3109/03091902.2012.682638. Epub 2012 May 24.

Abstract

The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.

摘要

所提出的系统为从良性和恶性肿瘤图像中高效、准确且以更少的计算时间分割肿瘤提供了新的纹理信息,特别是在计算机断层扫描(CT)图像的肿瘤区域较小尺寸情况下。从脑部CT图像数据中基于区域分割肿瘤是医学专家手动执行的一项重要但耗时的任务。这项工作的目标是使用组合的灰度和纹理特征以及新的边缘特征和非线性支持向量机(SVM)分类器从CT图像中分割脑部肿瘤。所选的最优特征用于对非线性SVM分类器进行建模和训练,以从计算机断层扫描图像中分割肿瘤,并对肿瘤图像的每一层切片评估分割精度。该方法应用于80张良性、恶性肿瘤图像的真实数据。将结果与放射科医生标记的地面真值进行比较。根据分割精度和重叠相似性度量骰子指标,对地面真值和分割后的肿瘤进行定量分析。从分割精度和骰子指标等分析和性能度量可以推断,与模糊c均值聚类方法相比,归一化割分割方法实现了更好的分割精度和更高的骰子指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验