Suppr超能文献

急性缺氧通过降低小鼠血浆甘油三酯清除率诱导高甘油三酯血症。

Acute hypoxia induces hypertriglyceridemia by decreasing plasma triglyceride clearance in mice.

机构信息

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.

出版信息

Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E377-88. doi: 10.1152/ajpendo.00641.2011. Epub 2012 May 22.

Abstract

Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH) during sleep and is associated with elevated triglycerides (TG). We previously demonstrated that mice exposed to chronic IH develop elevated TG. We now hypothesize that a single exposure to acute hypoxia also increases TG due to the stimulation of free fatty acid (FFA) mobilization from white adipose tissue (WAT), resulting in increased hepatic TG synthesis and secretion. Male C57BL6/J mice were exposed to FiO(2) = 0.21, 0.17, 0.14, 0.10, or 0.07 for 6 h followed by assessment of plasma and liver TG, glucose, FFA, ketones, glycerol, and catecholamines. Hypoxia dose-dependently increased plasma TG, with levels peaking at FiO(2) = 0.07. Hepatic TG levels also increased with hypoxia, peaking at FiO(2) = 0.10. Plasma catecholamines also increased inversely with FiO(2). Plasma ketones, glycerol, and FFA levels were more variable, with different degrees of hypoxia inducing WAT lipolysis and ketosis. FiO(2) = 0.10 exposure stimulated WAT lipolysis but decreased the rate of hepatic TG secretion. This degree of hypoxia rapidly and reversibly delayed TG clearance while decreasing [(3)H]triolein-labeled Intralipid uptake in brown adipose tissue and WAT. Hypoxia decreased adipose tissue lipoprotein lipase (LPL) activity in brown adipose tissue and WAT. In addition, hypoxia decreased the transcription of LPL, peroxisome proliferator-activated receptor-γ, and fatty acid transporter CD36. We conclude that acute hypoxia increases plasma TG due to decreased tissue uptake, not increased hepatic TG secretion.

摘要

阻塞性睡眠呼吸暂停(OSA)在睡眠期间引起间歇性缺氧(IH),并与甘油三酯(TG)升高有关。我们之前的研究表明,暴露于慢性 IH 的小鼠会出现 TG 升高。我们现在假设,单次急性缺氧也会由于白色脂肪组织(WAT)中游离脂肪酸(FFA)的动员而增加 TG,从而导致肝 TG 合成和分泌增加。雄性 C57BL6/J 小鼠暴露于 FiO(2) = 0.21、0.17、0.14、0.10 或 0.07 6 小时,然后评估血浆和肝脏 TG、葡萄糖、FFA、酮体、甘油和儿茶酚胺。缺氧呈剂量依赖性地增加血浆 TG,在 FiO(2) = 0.07 时达到峰值。肝 TG 水平也随着缺氧而增加,在 FiO(2) = 0.10 时达到峰值。血浆儿茶酚胺也随着 FiO(2)的降低而增加。血浆酮体、甘油和 FFA 水平变化较大,不同程度的缺氧诱导 WAT 脂肪分解和酮症。FiO(2) = 0.10 暴露刺激 WAT 脂肪分解,但降低了肝 TG 分泌的速度。这种程度的缺氧迅速而可逆地延迟了 TG 的清除,同时降低了棕色脂肪组织和 WAT 中 [(3)H]三油酸甘油酯标记的 Intralipid 的摄取。缺氧降低了棕色脂肪组织和 WAT 中脂肪组织脂蛋白脂肪酶(LPL)的活性。此外,缺氧降低了 LPL、过氧化物酶体增殖物激活受体-γ 和脂肪酸转运蛋白 CD36 的转录。我们得出结论,急性缺氧会因组织摄取减少而不是肝 TG 分泌增加而导致血浆 TG 升高。

相似文献

1
Acute hypoxia induces hypertriglyceridemia by decreasing plasma triglyceride clearance in mice.
Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E377-88. doi: 10.1152/ajpendo.00641.2011. Epub 2012 May 22.
2
Ritonavir impairs lipoprotein lipase-mediated lipolysis and decreases uptake of fatty acids in adipose tissue.
Arterioscler Thromb Vasc Biol. 2006 Jan;26(1):124-9. doi: 10.1161/01.ATV.0000194073.87647.10. Epub 2005 Nov 3.
3
Differential regulation of fatty acid trapping in mouse adipose tissue and muscle by ASP.
Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E150-9. doi: 10.1152/ajpendo.00398.2003.
4
Effect of chronic intermittent hypoxia on triglyceride uptake in different tissues.
J Lipid Res. 2013 Apr;54(4):1058-65. doi: 10.1194/jlr.M034272. Epub 2013 Feb 5.
5
WAT apoC-I secretion: role in delayed chylomicron clearance in vivo and ex vivo in WAT in obese subjects.
J Lipid Res. 2016 Jun;57(6):1074-85. doi: 10.1194/jlr.P064170. Epub 2016 Apr 3.
6
Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice.
Arterioscler Thromb Vasc Biol. 2015 Jan;35(1):102-10. doi: 10.1161/ATVBAHA.114.304615. Epub 2014 Nov 13.
7
Omega-3 triglycerides modify blood clearance and tissue targeting pathways of lipid emulsions.
Biochemistry. 2002 Mar 5;41(9):3119-27. doi: 10.1021/bi015770h.
8
CD36 deficiency in mice impairs lipoprotein lipase-mediated triglyceride clearance.
J Lipid Res. 2005 Oct;46(10):2175-81. doi: 10.1194/jlr.M500112-JLR200. Epub 2005 Jul 16.

引用本文的文献

1
Correlation between TG/HDL-C ratio and obstructive sleep apnea in the adult US population: a cross-sectional study.
Front Neurol. 2025 Jun 19;16:1594875. doi: 10.3389/fneur.2025.1594875. eCollection 2025.
2
Intermittent hypoxia increases lipid insulin resistance in healthy humans: A randomized crossover trial.
J Sleep Res. 2025 Apr;34(2):e14243. doi: 10.1111/jsr.14243. Epub 2024 Jun 12.
3
Duration of intermittent hypoxia impacts metabolic outcomes and severity of murine NAFLD.
Front Sleep. 2023;2. doi: 10.3389/frsle.2023.1215944. Epub 2023 Aug 25.
4
Time Spent with Saturation below 80% versus 90% in Patients with Obstructive Sleep Apnoea.
J Clin Med. 2023 Jun 22;12(13):4205. doi: 10.3390/jcm12134205.
5
Cold exposure alters lipid metabolism of skeletal muscle through HIF-1α-induced mitophagy.
BMC Biol. 2023 Feb 8;21(1):27. doi: 10.1186/s12915-023-01514-4.
7
10
Obstructive Sleep Apnea and Cardiovascular Diseases: Sad Realities and Untold Truths regarding Care of Patients in 2022.
Cardiovasc Ther. 2022 Aug 11;2022:6006127. doi: 10.1155/2022/6006127. eCollection 2022.

本文引用的文献

1
CPAP for the metabolic syndrome in patients with obstructive sleep apnea.
N Engl J Med. 2011 Dec 15;365(24):2277-86. doi: 10.1056/NEJMoa1103944.
2
Continuous positive airway pressure reduces postprandial lipidemia in obstructive sleep apnea: a randomized, placebo-controlled crossover trial.
Am J Respir Crit Care Med. 2011 Aug 1;184(3):355-61. doi: 10.1164/rccm.201102-0316OC. Epub 2011 Apr 28.
4
Brown adipose tissue activity controls triglyceride clearance.
Nat Med. 2011 Feb;17(2):200-5. doi: 10.1038/nm.2297. Epub 2011 Jan 23.
6
Fat as a fuel: emerging understanding of the adipose tissue-skeletal muscle axis.
Acta Physiol (Oxf). 2010 Aug;199(4):509-18. doi: 10.1111/j.1748-1716.2010.02128.x. Epub 2010 Mar 26.
7
Obstructive sleep apnea and dyslipidemia: implications for atherosclerosis.
Curr Opin Endocrinol Diabetes Obes. 2010 Apr;17(2):161-5. doi: 10.1097/MED.0b013e3283373624.
8
Effect of intermittent hypoxia on atherosclerosis in apolipoprotein E-deficient mice.
Atherosclerosis. 2010 Apr;209(2):381-6. doi: 10.1016/j.atherosclerosis.2009.10.017. Epub 2009 Oct 17.
9
Transcriptional factors that promote formation of white adipose tissue.
Mol Cell Endocrinol. 2010 Apr 29;318(1-2):10-4. doi: 10.1016/j.mce.2009.08.023. Epub 2009 Sep 4.
10
Metabolic consequences of sleep-disordered breathing.
ILAR J. 2009;50(3):289-306. doi: 10.1093/ilar.50.3.289.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验