Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
J Mol Graph Model. 2012 Jul;37:59-66. doi: 10.1016/j.jmgm.2012.03.006. Epub 2012 Mar 30.
Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble catalytic domain (V₁; NtpA₃-B₃-D-G) and an integral membrane domain (V₀; NtpI-K₁₀) connected by a central and two peripheral stalks (NtpC, NtpD-G and NtpE-F). Recently nucleotide binding of catalytic NtpA monomer has been reported (Arai et al.). In the present study, we calculated the nucleotide binding affinity of NtpA by molecular dynamics (MD) simulation/free energy calculation using MM-GBSA approach based on homology modeled structure of NtpA monomer docked with ATP analogue, adenosine 5'-[β, γ-imido] triphosphate (AMP-PNP). The calculated binding free energies showed qualitatively good agreement with experimental data. The calculation was cross-validated further by the rigorous method, thermodynamic integration (TI) simulation. Finally, the interaction between NtpA and nucleotides at the atomic level was investigated by the analyses of components of free energy and the optimized model structures obtained from MD simulations, suggesting that electrostatic contribution is responsible for the difference in nucleotide binding to NtpA monomer. This is the first observation and suggestion to explain the difference of nucleotide binding properties in V-ATPase NtpA subunit, and our method can be a valuable primary step to predict nucleotide binding affinity to other subunits (NtpAB, NtpA₃B₃) and to explore subunit interactions and eventually may help to understand energy transduction mechanism of E. hirae V-ATPase.
韦克氏球菌空泡型三磷酸腺苷酶(V-ATPase)由可溶性催化结构域(V₁;NtpA₃-B₃-D-G)和整合膜结构域(V₀;NtpI-K₁₀)组成,两者由一个中心和两个外周柄(NtpC、NtpD-G 和 NtpE-F)连接。最近有报道称催化 NtpA 单体的核苷酸结合(Arai 等人)。在本研究中,我们通过基于同源建模结构的分子动力学(MD)模拟/自由能计算,使用 MM-GBSA 方法计算了 NtpA 的核苷酸结合亲和力,该结构与 ATP 类似物,腺苷 5'-[β,γ-亚氨基]三磷酸(AMP-PNP)对接。计算得到的结合自由能与实验数据定性一致。该计算进一步通过热力学积分(TI)模拟的严格方法进行了交叉验证。最后,通过对从 MD 模拟中获得的自由能组成和优化模型结构的分析,研究了 NtpA 与核苷酸之间的相互作用,在原子水平上,表明静电贡献是导致 NtpA 单体核苷酸结合差异的原因。这是首次观察到并提出解释 V-ATPase NtpA 亚基核苷酸结合特性差异的原因,我们的方法可以作为预测其他亚基(NtpAB、NtpA₃B₃)核苷酸结合亲和力以及探索亚基相互作用的有价值的初步步骤,最终可能有助于理解韦克氏球菌 V-ATPase 的能量转导机制。