Suppr超能文献

早期复合物 I 组装缺陷导致 ND1 亚基快速周转。

Early complex I assembly defects result in rapid turnover of the ND1 subunit.

机构信息

Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada H3A 2B4.

出版信息

Hum Mol Genet. 2012 Sep 1;21(17):3815-24. doi: 10.1093/hmg/dds209. Epub 2012 May 31.

Abstract

Complex I (CI, NADH ubiquinone oxidoreductase), the largest complex of the respiratory chain, is composed of 45 structural subunits, 7 of which are encoded in mtDNA. At least 10 factors necessary for holoenzyme assembly have been identified; however, the specific roles of most of them are not well understood. We investigated the role of NDUFAF3, NDUFAF4, C8orf38 and C20orf7, four early assembly factors, in the translation of the mtDNA-encoded CI structural subunits. Transient, or stable, siRNA-mediated knock-down of any of these factors abrogated the assembly of CI, and resulted in a specific decrease in the labeling of the ND1 subunit in a pulse translation experiment, whereas knock-down of NDUFAF2, a late assembly factor, did not affect ND1 translation. Pulse-chase experiments in cells knocked down for NDUFAF3 showed that the half-life of ND1 in the chase was reduced 4-fold, fully accounting for the decrease in pulse labeling. Transient, short-term knock-down of the m-AAA protease AGF3L2 in cells that had been depleted of any of the early CI assembly factors completely rescued the ND1 labeling phenotype, confirming that it is not a synthesis defect, but rather results from rapid proteolysis of newly synthesized ND1. NDUFAF3 co-immunoprecipitated with NDUFAF4, and three matrix arm structural subunits (NDUFS2, NDUFA9, NDUFS3) that are found in a 400 kDa assembly intermediate containing ND1. These data suggest that the four early CI assembly factors have non-redundant functions in the assembly of a module that docks and stabilizes newly synthesized ND1, nucleating assembly of the holoenzyme.

摘要

复合体 I(CI,NADH 泛醌氧化还原酶)是呼吸链中最大的复合物,由 45 个结构亚基组成,其中 7 个由 mtDNA 编码。已经鉴定出至少 10 种组装全酶所必需的因子;然而,它们大多数的具体作用还不是很清楚。我们研究了四个早期组装因子 NDUFAF3、NDUFAF4、C8orf38 和 C20orf7 在 mtDNA 编码的 CI 结构亚基翻译中的作用。瞬时或稳定的 siRNA 介导的这些因子之一的敲低会破坏 CI 的组装,并导致脉冲翻译实验中 ND1 亚基的标记特异性减少,而敲低晚期组装因子 NDUFAF2 则不会影响 ND1 的翻译。在敲低 NDUFAF3 的细胞中进行的脉冲追踪实验表明,ND1 在追踪过程中的半衰期减少了 4 倍,完全解释了脉冲标记的减少。在耗尽任何早期 CI 组装因子的细胞中瞬时、短期敲低 m-AAA 蛋白酶 AGF3L2 完全挽救了 ND1 标记表型,证实这不是合成缺陷,而是由于新合成的 ND1 的快速蛋白水解。NDUFAF3 与 NDUFAF4 共免疫沉淀,并与三个基质臂结构亚基(NDUFS2、NDUFA9、NDUFS3)共沉淀,这些亚基存在于包含 ND1 的 400 kDa 组装中间物中。这些数据表明,这四个早期的 CI 组装因子在一个模块的组装中具有非冗余的功能,该模块对接并稳定新合成的 ND1,为全酶的组装提供起始点。

相似文献

1
Early complex I assembly defects result in rapid turnover of the ND1 subunit.
Hum Mol Genet. 2012 Sep 1;21(17):3815-24. doi: 10.1093/hmg/dds209. Epub 2012 May 31.
2
The arginine methyltransferase NDUFAF7 is essential for complex I assembly and early vertebrate embryogenesis.
Hum Mol Genet. 2014 Oct 1;23(19):5159-70. doi: 10.1093/hmg/ddu239. Epub 2014 May 16.
3
Mutations in the gene encoding C8orf38 block complex I assembly by inhibiting production of the mitochondria-encoded subunit ND1.
J Mol Biol. 2011 Dec 2;414(3):413-26. doi: 10.1016/j.jmb.2011.10.012. Epub 2011 Oct 14.
6
Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I.
Mol Cell Biol. 2007 Jun;27(12):4228-37. doi: 10.1128/MCB.00074-07. Epub 2007 Apr 16.
9
Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly.
Biochim Biophys Acta. 2015 Jul;1852(7):1531-9. doi: 10.1016/j.bbadis.2015.04.008. Epub 2015 Apr 15.

引用本文的文献

1
Central dogma rates in human mitochondria.
Hum Mol Genet. 2024 May 22;33(R1):R34-R41. doi: 10.1093/hmg/ddae036.
2
Mitochondrial protein synthesis quality control.
Hum Mol Genet. 2024 May 22;33(R1):R53-R60. doi: 10.1093/hmg/ddae012.
3
A two-step mitochondrial import pathway couples the disulfide relay with matrix complex I biogenesis.
J Cell Biol. 2023 Jul 3;222(7). doi: 10.1083/jcb.202210019. Epub 2023 May 9.
5
Mitonuclear interactions and introgression genomics of macaque monkeys () highlight the influence of behaviour on genome evolution.
Proc Biol Sci. 2021 Oct 13;288(1960):20211756. doi: 10.1098/rspb.2021.1756. Epub 2021 Oct 6.
6
Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review.
Front Aging Neurosci. 2021 Mar 18;13:646901. doi: 10.3389/fnagi.2021.646901. eCollection 2021.
7
The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly.
Plant Physiol. 2021 May 27;186(1):599-610. doi: 10.1093/plphys/kiab074.
8
C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly.
Cell Metab. 2021 Mar 2;33(3):531-546.e9. doi: 10.1016/j.cmet.2021.01.005. Epub 2021 Feb 4.
9
A salvage pathway maintains highly functional respiratory complex I.
Nat Commun. 2020 Apr 2;11(1):1643. doi: 10.1038/s41467-020-15467-7.
10
Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes.
Redox Biol. 2020 Feb;30:101429. doi: 10.1016/j.redox.2020.101429. Epub 2020 Jan 11.

本文引用的文献

1
Radioactive labeling of mitochondrial translation products in cultured cells.
Methods Mol Biol. 2012;837:207-17. doi: 10.1007/978-1-61779-504-6_14.
2
Mutations in the gene encoding C8orf38 block complex I assembly by inhibiting production of the mitochondria-encoded subunit ND1.
J Mol Biol. 2011 Dec 2;414(3):413-26. doi: 10.1016/j.jmb.2011.10.012. Epub 2011 Oct 14.
3
Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.
Biochim Biophys Acta. 2012 Jan;1823(1):49-55. doi: 10.1016/j.bbamcr.2011.09.015. Epub 2011 Oct 6.
4
Understanding mitochondrial complex I assembly in health and disease.
Biochim Biophys Acta. 2012 Jun;1817(6):851-62. doi: 10.1016/j.bbabio.2011.08.010. Epub 2011 Sep 2.
5
Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria.
EMBO J. 2011 May 24;30(13):2545-56. doi: 10.1038/emboj.2011.169.
7
8
Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I.
Cell Metab. 2010 Sep 8;12(3):283-94. doi: 10.1016/j.cmet.2010.08.002.
9
Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect.
Am J Hum Genet. 2010 Jul 9;87(1):115-22. doi: 10.1016/j.ajhg.2010.06.004.
10
Functional modules and structural basis of conformational coupling in mitochondrial complex I.
Science. 2010 Jul 23;329(5990):448-51. doi: 10.1126/science.1191046. Epub 2010 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验