Departamento de Matemática Aplicada, Universidad de Granada, E-18071, Granada, Spain.
J Math Neurosci. 2011 Jul 18;1(1):7. doi: 10.1186/2190-8567-1-7.
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.AMS Subject Classification: 35K60, 82C31, 92B20.
神经元网络的非线性噪声漏积分和放电(NNLIF)模型可以写成神经元概率密度的福克-普朗克-科尔莫戈罗夫方程,模型中的主要参数是网络的连接性和噪声。我们分析了 NNLIF 模型的几个方面:稳态的数量、先验估计、爆炸问题以及在线性情况下向平衡的收敛。特别是对于兴奋性网络,对于初始数据集中在接近放电电位的情况,爆炸总是会发生。这些结果表明,噪声和兴奋/抑制相互作用与连接参数之间的平衡是多么关键。
AMC 主题分类:35K60,82C31,92B20。