Biological Reagents and Assay Development, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA.
Biochemistry. 2012 Jun 26;51(25):5198-211. doi: 10.1021/bi300611s. Epub 2012 Jun 15.
ATP citrate lyase (ACL) catalyzes an ATP-dependent biosynthetic reaction which produces acetyl-coenzyme A and oxaloacetate from citrate and coenzyme A (CoA). Studies were performed with recombinant human ACL to ascertain the nature of the catalytic phosphorylation that initiates the ACL reaction and the identity of the active site residues involved. Inactivation of ACL by treatment with diethylpyrocarbonate suggested the catalytic role of an active site histidine (i.e., His760), which was proposed to form a phosphohistidine species during catalysis. The pH-dependence of the pre-steady-state phosphorylation of ACL with [γ-(33)P]-ATP revealed an ionizable group with a pK(a) value of 7.5, which must be unprotonated for the catalytic phosphorylation of ACL to occur. Mutagenesis of His760 to an alanine results in inactivation of the biosynthetic reaction of ACL, in good agreement with the involvement of a catalytic histidine. The nature of the formation of the phospho-ACL was further investigated by positional isotope exchange using [γ-(18)O(4)]-ATP. The β,γ-bridge to nonbridge positional isotope exchange rate of [γ-(18)O(4)]-ATP achieved its maximal rate of 14 s(-1) in the absence of citrate and CoA. This rate decreased to 5 s(-1) when citrate was added, and was found to be 10 s(-1) when both citrate and CoA were present. The rapid positional isotope exchange rates indicated the presence of one or more catalytically relevant, highly reversible phosphorylated intermediates. Steady-state measurements in the absence of citrate and CoA showed that MgADP was produced by both wild type and H760A forms of ACL, with rates at three magnitudes lower than that of k(cat) for the full biosynthetic reaction. The ATPase activity of ACL, along with the small yet significant positional isotope exchange rate observed in H760A mutant ACL (150 fold less than wild type), collectively suggested the presence of a second, albeit unproductive, phosphoryl transfer in ACL. Mathematical analysis and computational simulation suggested that the desorption of MgADP at a rate of ~7 s(-1) was the rate-limiting step in the biosynthesis of AcCoA and oxaloacetate.
三磷酸腺苷柠檬酸裂解酶 (ACL) 催化一个依赖于 ATP 的生物合成反应,该反应从柠檬酸和辅酶 A (CoA) 产生乙酰辅酶 A 和草酰乙酸。使用重组人 ACL 进行的研究确定了起始 ACL 反应的催化磷酸化的性质以及涉及的活性位点残基的身份。用二乙基焦碳酸酯处理 ACL 导致 ACL 失活,表明活性位点组氨酸 (即 His760) 的催化作用,该组氨酸在催化过程中形成磷酸组氨酸物质。用 [γ-(33)P]-ATP 进行的 ACL 预稳态磷酸化的 pH 依赖性研究表明,存在一个 pK(a) 值约为 7.5 的可离子化基团,该基团必须未质子化才能发生 ACL 的催化磷酸化。将 His760 突变为丙氨酸导致 ACL 的生物合成反应失活,这与催化组氨酸的参与非常一致。通过使用 [γ-(18)O(4)]-ATP 进行的位置同位素交换进一步研究了磷酸 ACL 的形成性质。在不存在柠檬酸和 CoA 的情况下,[γ-(18)O(4)]-ATP 的β,γ-桥至非桥位置同位素交换速率达到 14 s(-1)的最大值。当添加柠檬酸时,该速率降低至 5 s(-1),并且当同时存在柠檬酸和 CoA 时,该速率为 10 s(-1)。快速的位置同位素交换速率表明存在一个或多个催化相关的、高度可逆的磷酸化中间产物。在不存在柠檬酸和 CoA 的稳态测量中,发现野生型和 H760A 形式的 ACL 均产生 MgADP,其速率比完整生物合成反应的 k(cat) 低三个数量级。ACL 的 ATP 酶活性以及在 H760A 突变体 ACL 中观察到的小但显著的位置同位素交换速率 (~野生型的 150 倍),共同表明在 ACL 中存在第二个尽管非生产性的磷酸转移。数学分析和计算模拟表明,MgADP 的解吸速率为 ~7 s(-1)是 AcCoA 和草酰乙酸生物合成的限速步骤。