Suppr超能文献

用于中枢神经系统组织工程的大鼠大脑皮质和 I 型胶原支架的黏弹性特征。

Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering.

机构信息

Tissue Engineering Laboratories, VA Boston Healthcare System, 150 South Huntington Ave, Boston, MA 02130, USA.

出版信息

J Mech Behav Biomed Mater. 2012 Aug;12:63-73. doi: 10.1016/j.jmbbm.2012.03.014. Epub 2012 Mar 29.

Abstract

In the field of tissue engineering and regenerative medicine for the central nervous system, therapeutic strategies may involve implantation of biomaterial scaffolds into the brain. An understanding of the relationship between the brain and the scaffold mechanical properties can help in the selection of a safe and effective biomaterial. This research demonstrates the use of indentation testing along with viscoelastic modeling to characterize and compare mechanical properties of in situ rat cerebral cortex and collagen scaffolds of varying collagen concentration. The stress-relaxation solution for indentation of a viscoelastic material was derived based on a five-element Maxwell model and use of the correspondence principle. Applying the model to experimental stress-relaxation data, the brain was characterized by three shear moduli G(1)=1.6±0.10 kPa, G(2)=2.0±0.15 kPa, G(3)=1.8±0.20 kPa, and two viscosities η(2)=11.0 ± 0.44 kPa⋅s, η(3)=148.7 ± 6.70 kPa⋅s, with corresponding relaxation time constants τ(1)=5.7±0.3 s and τ(2)=88.4 ± 7.6 s. The brain showed average relaxation of 74% from its peak force during loading to an approximately asymptotic force over a 5 minute hold at constant displacement. Collagen scaffolds generally showed increasing trends in the shear moduli, viscosities, and percentage relaxation with increasing collagen concentration. While the brain had similar stiffness to the 1.0% collagen scaffold during the loading phase, the brain's relaxation behavior was distinct from all of the scaffolds. Similarities and differences between the mechanical behavior of the brain and collagen scaffolds of varying collagen concentration are discussed in relation to application of biomaterials for regenerative medicine.

摘要

在中枢神经系统的组织工程和再生医学领域,治疗策略可能涉及将生物材料支架植入大脑。了解大脑与支架机械性能之间的关系有助于选择安全有效的生物材料。本研究通过压痕测试和粘弹性建模相结合,来表征和比较不同胶原浓度的原位大鼠大脑皮层和胶原支架的机械性能。基于五元件 Maxwell 模型和对应原理,推导出粘弹性材料压痕的应力松弛解。将模型应用于实验应力松弛数据,用三个剪切模量 G(1)=1.6±0.10 kPa、G(2)=2.0±0.15 kPa、G(3)=1.8±0.20 kPa 和两个粘度 η(2)=11.0 ± 0.44 kPa⋅s、η(3)=148.7 ± 6.70 kPa⋅s 来描述大脑,相应的松弛时间常数 τ(1)=5.7±0.3 s 和 τ(2)=88.4 ± 7.6 s。大脑在加载过程中从峰值力到恒定位移保持 5 分钟时的近似渐近力的平均弛豫率为 74%。胶原支架的剪切模量、粘度和弛豫率随着胶原浓度的增加呈上升趋势。在加载阶段,大脑的刚度与 1.0%胶原支架相似,但大脑的松弛行为与所有支架明显不同。讨论了大脑和不同胶原浓度的胶原支架机械性能之间的异同,以探讨生物材料在再生医学中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验