CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal.
J Neuroendocrinol. 2012 Oct;24(10):1346-55. doi: 10.1111/j.1365-2826.2012.02341.x.
The Zucker diabetic fatty (ZDF) rat is an obesity and type 2 diabetes model. Progression to diabetes is well characterised in ZDF rats, but only in the fasted state. We evaluated the mechanisms underlying postprandial insulin resistance in young ZDF rats. We tested the hypothesis that the overall postprandial action of insulin is affected in ZDF rats as a result of impairment of the hepatic parasympathetic-nitric oxide (PSN-NO) axis and/or glutathione (GSH), resulting in decreased indirect (PSN-NO axis) and direct actions of insulin. Nine-week-old male ZDF rats and lean Zucker rats (LZR, controls) were used. The action of insulin was assessed in the fed state before and after parasympathetic antagonism atropine. Basal hepatic NO and GSH were measured, as well as NO synthase (NOS) and γ-glutamyl-cysteine synthethase (GCS) activity and expression. ZDF rats presented postprandial hyperglycaemia (ZDF, 201.4 ± 12.9 mg/dl; LZR, 107.7 ± 4.3 mg/dl), but not insulinopaenia (ZDF, 5.9 ± 0.8 ng/ml; LZR, 1.5 ± 0.3 ng/ml). Total postprandial insulin resistance was observed (ZDF, 78.6 ± 7.5 mg glucose/kg; LZR, 289.2 ± 24.7 mg glucose/kg), with a decrease in both the direct action of insulin (ZDF, 54.8 ± 7.0 mg glucose/kg; LZR, 173.3 ± 20.5 mg glucose/kg) and the PSN-NO axis (ZDF, 24.5 ± 3.9 mg glucose/kg; LZR, 115.9 ± 19.4 mg glucose/kg). Hepatic NO (ZDF, 117.2 ± 11.4 μmol/g tissue; LZR, 164.6 ± 4.9 μmol/g tissue) and GSH (ZDF, 4.9 ± 0.3 μmol/g; LZR, 5.9 ± 0.2 μmol/g) were also compromised as a result of decreased NOS and GCS activity, respectively. These results suggest a compromise of the mechanism responsible for potentiating insulin action after a meal in ZDF rats. We show that defective PSN-NO axis and GSH synthesis, together with an impaired direct action of insulin, appears to contribute to postprandial insulin resistance in this model.
Zucker 糖尿病肥胖(ZDF)大鼠是一种肥胖和 2 型糖尿病模型。ZDF 大鼠的糖尿病进展特征明显,但仅在空腹状态下。我们评估了年轻 ZDF 大鼠餐后胰岛素抵抗的机制。我们假设 ZDF 大鼠餐后胰岛素的整体作用受到损害,原因是肝副交感神经-一氧化氮(PSN-NO)轴和/或谷胱甘肽(GSH)受损,导致间接(PSN-NO 轴)和直接作用的胰岛素减少。使用 9 周龄雄性 ZDF 大鼠和 lean Zucker 大鼠(LZR,对照)。在副交感神经拮抗剂阿托品作用前后,评估了进食状态下胰岛素的作用。测量了基础肝 NO 和 GSH,以及一氧化氮合酶(NOS)和γ-谷氨酰半胱氨酸合成酶(GCS)的活性和表达。ZDF 大鼠出现餐后高血糖(ZDF,201.4 ± 12.9 mg/dl;LZR,107.7 ± 4.3 mg/dl),但没有胰岛素缺乏(ZDF,5.9 ± 0.8 ng/ml;LZR,1.5 ± 0.3 ng/ml)。观察到总餐后胰岛素抵抗(ZDF,78.6 ± 7.5 mg 葡萄糖/kg;LZR,289.2 ± 24.7 mg 葡萄糖/kg),直接作用的胰岛素减少(ZDF,54.8 ± 7.0 mg 葡萄糖/kg;LZR,173.3 ± 20.5 mg 葡萄糖/kg)和 PSN-NO 轴(ZDF,24.5 ± 3.9 mg 葡萄糖/kg;LZR,115.9 ± 19.4 mg 葡萄糖/kg)。肝 NO(ZDF,117.2 ± 11.4 μmol/g 组织;LZR,164.6 ± 4.9 μmol/g 组织)和 GSH(ZDF,4.9 ± 0.3 μmol/g;LZR,5.9 ± 0.2 μmol/g)也因 NOS 和 GCS 活性降低而受到损害。这些结果表明,ZDF 大鼠餐后增强胰岛素作用的机制受损。我们发现,PSN-NO 轴和 GSH 合成缺陷以及胰岛素直接作用受损,似乎导致了该模型的餐后胰岛素抵抗。