Chen Carol G, Thuillier Daniel, Chin Emily N, Alliston Tamara
University of California, San Francisco, CA 94143, USA.
Arthritis Rheum. 2012 Oct;64(10):3278-89. doi: 10.1002/art.34566.
To identify mechanisms by which Smad3 maintains articular cartilage and prevents osteoarthritis.
A combination of in vivo and in vitro approaches was used to test the hypothesis that Smad3 represses Runx2-inducible gene expression to prevent articular cartilage degeneration. Col2-Cre;Smad3(fl/fl) mice allowed study of the chondrocyte-intrinsic role of Smad3 independently of its role in the perichondrium or other tissues. Primary articular cartilage chondrocytes from Smad3(fl/fl) mice and ATDC5 chondroprogenitor cells were used to evaluate Smad3 and Runx2 regulation of matrix metalloproteinase 13 (MMP-13) messenger RNA (mRNA) and protein expression.
Chondrocyte-specific reduction of Smad3 caused progressive articular cartilage degeneration due to imbalanced cartilage matrix synthesis and degradation. In addition to reduced type II collagen mRNA expression, articular cartilage from Col2-Cre;Smad3(fl/fl) mice was severely deficient in type II collagen and aggrecan protein due to excessive MMP-13-mediated proteolysis of these key cartilage matrix constituents. Normally, transforming growth factor β (TGFβ) signals through Smad3 to confer a rapid and dynamic repression of Runx2-inducible MMP-13 expression. However, we found that in the absence of Smad3, TGFβ signals through p38 and Runx2 to induce MMP-13 expression.
Our findings elucidate a mechanism by which Smad3 mutations in humans and mice cause cartilage degeneration and osteoarthritis. Specifically, Smad3 maintains the balance between cartilage matrix synthesis and degradation by inducing type II collagen expression and repressing Runx2-inducible MMP-13 expression. Selective activation of TGFβ signaling through Smad3, rather than p38, may help to restore the balance between matrix synthesis and proteolysis that is lost in osteoarthritis.
确定Smad3维持关节软骨并预防骨关节炎的机制。
采用体内和体外相结合的方法来验证Smad3通过抑制Runx2诱导的基因表达以防止关节软骨退变这一假说。Col2-Cre;Smad3(fl/fl)小鼠可用于独立研究Smad3在软骨细胞中的内在作用,而不受其在软骨膜或其他组织中作用的影响。利用来自Smad3(fl/fl)小鼠的原代关节软骨细胞和ATDC5软骨祖细胞来评估Smad3和Runx2对基质金属蛋白酶13(MMP-13)信使核糖核酸(mRNA)和蛋白表达的调控。
Smad3在软骨细胞中的特异性减少导致关节软骨基质合成与降解失衡,进而引起进行性关节软骨退变。除II型胶原蛋白mRNA表达降低外,Col2-Cre;Smad3(fl/fl)小鼠的关节软骨中II型胶原蛋白和聚集蛋白聚糖严重缺乏,这是由于MMP-13对这些关键软骨基质成分的过度蛋白水解作用所致。正常情况下,转化生长因子β(TGFβ)通过Smad3发出信号,快速动态地抑制Runx2诱导的MMP-13表达。然而,我们发现,在缺乏Smad3的情况下,TGFβ通过p38和Runx2发出信号来诱导MMP-13表达。
我们的研究结果阐明了人类和小鼠中Smad3突变导致软骨退变和骨关节炎的机制。具体而言,Smad3通过诱导II型胶原蛋白表达并抑制Runx2诱导的MMP-13表达来维持软骨基质合成与降解之间的平衡。通过Smad3而非p38选择性激活TGFβ信号,可能有助于恢复骨关节炎中丧失的基质合成与蛋白水解之间的平衡。