Department of Chemistry, Washington University, 1 Brookings Drive, St Louis, Missouri 63130, United States.
Environ Sci Technol. 2013 Jan 2;47(1):119-25. doi: 10.1021/es301287n. Epub 2012 Jun 11.
We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions.
我们探索了一种新的原位核磁共振波谱方法,该方法能够监测地质 CO2封存相关条件下超临界 CO2的化学演变。我们选择菱镁矿(Mg(OH)2)与超临界 CO2(88 巴)在 80°C 的水溶液中的快速反应作为模型。在整个反应过程中,观察到 CO2迅速转化为亚稳和稳定的碳酸盐。反应超过 58 小时后,通过玻璃反应管对未受干扰的产物进行原位拉曼光谱分析,在此过程中,激光聚焦在未受干扰的产物上。反应后,对提取并干燥的产物进行了拉曼光谱、粉末 X 射线衍射和魔角旋转(1H 去耦(13C)NMR)的非原位分析。这些单独的分析方法证实了产物具有空间依赖性,这可能是由于反应物的可用性、pH 值存在梯度,或者涉及首先形成羟基水合(碱性、水合)碳酸盐,然后转化为最终产物无水菱镁矿的反应机制造成的。这种碳化反应说明了在封存条件下静态(未混合)反应系统的重要性。