Institue of Molecular Science, the Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China.
Phys Chem Chem Phys. 2012 Nov 21;14(43):14769-74. doi: 10.1039/c2cp40902j. Epub 2012 Jun 8.
Based upon comprehensive theoretical investigations and known experimental observations, we predict the existence of the double-chain planar D(2h) B(4)H(2)(1), C(2h) B(8)H(2)(3), and C(2h) B(12)H(2)(5) which appear to be the lowest-lying isomers of the systems at the density functional theory level. These conjugated aromatic borenes turn out to be the boron hydride analogues of the conjugated ethylene D(2h) C(2)H(4)(2), 1,3-butadiene C(2h) C(4)H(6)(4), and 1,3,5-hexatriene C(2h) C(6)H(8)(6), respectively, indicating that a B(4) rhombus in B(2n)H(2) borenes (n = 2, 4, 6) is equivalent to a C=C double bond unit in the corresponding C(n)H(n+2) hydrocarbons. Detailed canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), and electron localization function (ELF) analyses unravel the bonding patterns of these novel borene clusters and indicate that they are all overall aromatic in nature with the formation of islands of both σ- and π- aromaticity. The double-chain planar or quasi-planar C(2v) B(3)H(2)(-)(7), C(2) B(5)H(2)(-)(8), and C(2h) B(6)H(2)(9) with one delocalized π orbital, C(2v) B(7)H(2)(-)(10), C(2) B(9)H(2)(-)(11), and C(2h) B(10)H(2)(12) with two delocalized π orbitals, and C(2v) B(11)H(2)(-)(13) with three delocalized π orbitals are found to be analogous in π-bonding to D(2h) B(4)H(2)(1), C(2h) B(8)H(2)(3), and C(2h) B(12)H(2)(5), respectively. We also calculated the electron affinities and ionization potentials of the neutrals and simulated the photoelectron spectroscopic spectra of the monoanions to facilitate their future experimental characterization. The results obtained in this work enrich the analogous relationship between hydroborons and their hydrocarbon counterparts and help to understand the high stability of the theoretically predicted all-boron nanostructures which favor the formation of double-chain substructures.
基于全面的理论研究和已知的实验观察,我们预测了双链式平面 D(2h) B(4)H(2)(1)、C(2h) B(8)H(2)(3) 和 C(2h) B(12)H(2)(5) 的存在,它们似乎是在密度泛函理论水平下该体系中最低能量的异构体。这些共轭芳香硼烯是硼烷的类似物,分别类似于共轭乙烯 D(2h) C(2)H(4)(2)、1,3-丁二烯 C(2h) C(4)H(6)(4) 和 1,3,5-己三烯 C(2h) C(6)H(8)(6),这表明硼 2n)H(2) 硼烯(n = 2,4,6)中的 B(4) 菱形与相应的 C(n)H(n+2) 烃中的 C=C 双键单元等效。详细的正则分子轨道(CMO)、自适应自然密度分区(AdNDP)和电子定域函数(ELF)分析揭示了这些新型硼烯团簇的成键模式,并表明它们本质上都是整体芳香的,具有σ-和π-芳香性的岛屿形成。具有一个离域π轨道的双链式平面或准平面 C(2v) B(3)H(2)(-)(7)、C(2) B(5)H(2)(-)(8) 和 C(2h) B(6)H(2)(9)、具有两个离域π轨道的 C(2v) B(7)H(2)(-)(10)、C(2) B(9)H(2)(-)(11) 和 C(2h) B(10)H(2)(12) 以及具有三个离域π轨道的 C(2v) B(11)H(2)(-)(13) 在π键合方面与 D(2h) B(4)H(2)(1)、C(2h) B(8)H(2)(3) 和 C(2h) B(12)H(2)(5) 分别类似。我们还计算了中性体的电子亲和能和电离势,并模拟了单阴离子的光电子能谱,以促进它们的未来实验表征。这项工作的结果丰富了硼氢化物与其碳氢化合物对应物之间的类似关系,并有助于理解理论预测的全硼纳米结构的高稳定性,这些结构有利于双链亚结构的形成。