Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1.
J Phys Chem A. 2012 Jul 5;116(26):7057-64. doi: 10.1021/jp3039187. Epub 2012 Jun 22.
Molecular dynamics simulations are used to investigate heterogeneous ice nucleation in model systems where an electric field acts on water molecules within 10-20 Å of a surface. Two different water models (the six-site and TIP4P/Ice models) are considered, and in both cases, it is shown that a surface field can serve as a very effective ice nucleation catalyst in supercooled water. Ice with a ferroelectric cubic structure nucleates near the surface, and dipole disordered cubic ice grows outward from the surface layer. We examine the influences of temperature and two important field parameters, the field strength and distance from the surface over which it acts, on the ice nucleation process. For the six-site model, the highest temperature where we observe field-induced ice nucleation is 280 K, and for TIP4P/Ice 270 K (note that the estimated normal freezing points of the six-site and TIP4P/Ice models are ∼289 and ∼270 K, respectively). The minimum electric field strength required to nucleate ice depends a little on how far the field extends from the surface. If it extends 20 Å, then a field strength of 1.5 × 10(9) V/m is effective for both models. If the field extent is 10 Å, then stronger fields are required (2.5 × 10(9) V/m for TIP4P/Ice and 3.5 × 10(9) V/m for the six-site model). Our results demonstrate that fields of realistic strength, that act only over a narrow surface region, can effectively nucleate ice at temperatures not far below the freezing point. This further supports the possibility that local electric fields can be a significant factor influencing heterogeneous ice nucleation in physical situations. We would expect this to be especially relevant for ice nuclei with very rough surfaces where one would expect local fields of varying strength and direction.
分子动力学模拟用于研究模型系统中的异质冰核形成,其中电场作用于距表面 10-20Å 的水分子。考虑了两种不同的水模型(六点位和 TIP4P/Ice 模型),在这两种情况下,都表明表面场可以在过冷水中作为非常有效的冰核形成催化剂。具有铁电立方结构的冰在靠近表面的地方成核,偶极无序立方冰从表面层向外生长。我们研究了温度和两个重要场参数(场强和距表面的距离)对冰核形成过程的影响。对于六点位模型,观察到的场诱导冰核形成的最高温度为 280K,对于 TIP4P/Ice 为 270K(请注意,六点位和 TIP4P/Ice 模型的估计正常冰点分别约为 289K 和 270K)。需要的最小电场强度取决于场从表面延伸的距离。如果它延伸 20Å,则对于两种模型,场强为 1.5×10(9)V/m 是有效的。如果场的范围是 10Å,则需要更强的场(TIP4P/Ice 为 2.5×10(9)V/m,六点位模型为 3.5×10(9)V/m)。我们的结果表明,仅在狭窄的表面区域起作用的实际强度的场可以在远低于冰点的温度下有效地成核冰。这进一步支持了局部电场可能是影响物理情况下异质冰核形成的重要因素的可能性。我们预计这对于具有非常粗糙表面的冰核尤其相关,在这些冰核中,人们预计会有不同强度和方向的局部场。