Suppr超能文献

利用傅里叶变换近红外光谱法快速测定小麦秸秆固态发酵过程中的 pH 值及有效波长选择。

Rapid determination of pH in solid-state fermentation of wheat straw by FT-NIR spectroscopy and efficient wavelengths selection.

机构信息

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China.

出版信息

Anal Bioanal Chem. 2012 Aug;404(2):603-11. doi: 10.1007/s00216-012-6128-y. Epub 2012 Jun 12.

Abstract

In the work discussed in this paper we investigated the feasibility of determination of the pH of a fermented substrate in solid-state fermentation (SSF) of wheat straw. Fourier-transform near-infrared (FT-NIR) spectroscopy was combined with an appropriate multivariate method of analysis. A genetic algorithm and synergy interval partial least-squares (GA-siPLS) were used to select the efficient spectral subintervals and wavelengths by k-fold cross-validation during development of the model. The performance of the final model was evaluated by use of the root mean square error of cross-validation (RMSECV) and correlation coefficient (R (c)) for the calibration set, and verified by use of the root mean square error of prediction (RMSEP) and correlation coefficient (R (p)) for the validation set. The experimental results showed that the optimum GA-siPLS model was achieved by use of seven PLS factors, when four spectral subintervals were selected by siPLS and then 45 wavelength variables were chosen by use of the GA. The predicted precision of the best model obtained was: RMSECV = 0.0583, R (c) = 0.9878, RMSEP = 0.0779, and R (p) = 0.9779. Finally, the superior performance of the GA-siPLS model was demonstrated by comparison with four other PLS models. The overall results indicated that FT-NIR spectroscopy can be successfully used for measurement of pH in solid-state fermentation, and use of the GA-siPLS algorithm is the best means of calibration of the model.

摘要

在本文讨论的工作中,我们研究了在小麦秸秆固态发酵(SSF)中确定发酵底物 pH 值的可行性。傅里叶变换近红外(FT-NIR)光谱学与适当的多元分析方法相结合。遗传算法和协同区间偏最小二乘法(GA-siPLS)用于在模型开发过程中通过 k 折交叉验证选择有效的光谱子区间和波长。最终模型的性能通过使用校正集的交叉验证均方根误差(RMSECV)和相关系数(R(c))进行评估,并通过使用验证集的预测均方根误差(RMSEP)和相关系数(R(p))进行验证。实验结果表明,当使用 siPLS 选择四个光谱子区间,然后使用 GA 选择 45 个波长变量时,使用七个 PLS 因子可以获得最佳的 GA-siPLS 模型。获得的最佳模型的预测精度为:RMSECV = 0.0583,R(c)= 0.9878,RMSEP = 0.0779,R(p)= 0.9779。最后,通过与其他四个 PLS 模型进行比较,证明了 GA-siPLS 模型的卓越性能。总体结果表明,FT-NIR 光谱学可成功用于固态发酵中 pH 值的测量,并且使用 GA-siPLS 算法是校准模型的最佳方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验