Suppr超能文献

远曲小管细胞旁转运的调节。

Regulation of paracellular transport in the distal nephron.

机构信息

Washington University Renal Division, St. Louis, Missouri 63110, USA.

出版信息

Curr Opin Nephrol Hypertens. 2012 Sep;21(5):547-51. doi: 10.1097/MNH.0b013e328355cb47.

Abstract

PURPOSE OF REVIEW

Claudins play a major role in the regulation of paracellular electrolyte reabsorption in the kidney. This review describes the recent findings of the physiological function of claudins underlying the paracellular transport mechanisms for Cl(-) reabsorption in the collecting duct.

RECENT FINDINGS

There are two parallel mechanisms for transepithelial Cl(-) reabsorption in the collecting duct that utilize the Na-driven Cl-bicarbonate exchanger (NDCBE) and the claudin-based paracellular channel. Histological studies have demonstrated the renal localization of claudin-3, claudin-4, claudin-7, and claudin-8 in the collecting duct. Molecular analyses using several collecting duct cell models have come to the conclusion that claudin-4 functions as a paracellular Cl(-) channel. The channel function of claudin-4 is conferred by a charged lysine residue (K65) in its extracellular loop. Claudin-8 is required for paracellular Cl(-) permeation through its interaction with and recruitment of claudin-4 during tight junction assembly. Claudin-7 provides the basic barrier function to the collecting duct. Genetic ablation of claudin-7 in animals results in systemic dehydration owing to the loss of extracellular ions and fluid in the kidney.

SUMMARY

The paracellular pathway in the collecting duct is an important route for transepithelial Cl(-) reabsorption that determines the extracellular NaCl content and the blood pressure. In the collecting duct cells, claudin-4 and claudin-8 interact to form a paracellular Cl(-) channel, whereas claudin-7 maintains the transepithelial resistance. Different subsets of the claudin family proteins fulfill diverse aspects of the tight junction function that will be fundamental to understanding the physiology of the paracellular pathway.

摘要

目的综述

紧密连接蛋白在调节肾脏细胞旁电解质重吸收中起主要作用。本综述描述了最近发现的紧密连接蛋白在连接蛋白依赖的细胞旁氯离子转运机制中对集合管细胞旁氯离子重吸收的生理功能。

研究进展

在集合管中存在两种平行的跨上皮氯离子重吸收机制,分别利用钠驱动的氯离子-碳酸氢盐交换体(NDCBE)和紧密连接蛋白依赖的细胞旁通道。组织学研究已经证明了紧密连接蛋白-3、-4、-7 和 -8 在集合管中的肾脏定位。使用几种集合管细胞模型的分子分析得出结论,紧密连接蛋白-4 作为细胞旁氯离子通道发挥作用。紧密连接蛋白-4 的通道功能是由其细胞外环中的带电荷赖氨酸残基(K65)赋予的。紧密连接蛋白-8 通过与紧密连接蛋白-4 相互作用并募集紧密连接蛋白-4,在紧密连接组装过程中对细胞旁氯离子渗透是必需的。紧密连接蛋白-7 为集合管提供基本的屏障功能。动物中紧密连接蛋白-7 的基因缺失导致细胞外离子和肾脏中液体的丢失,从而导致全身脱水。

总结

集合管中的细胞旁途径是跨上皮氯离子重吸收的重要途径,决定细胞外 NaCl 含量和血压。在集合管细胞中,紧密连接蛋白-4 和紧密连接蛋白-8 相互作用形成细胞旁氯离子通道,而紧密连接蛋白-7 维持跨上皮电阻。紧密连接蛋白家族蛋白的不同亚群满足紧密连接功能的不同方面,这对于理解细胞旁途径的生理学将是至关重要的。

相似文献

1
Regulation of paracellular transport in the distal nephron.
Curr Opin Nephrol Hypertens. 2012 Sep;21(5):547-51. doi: 10.1097/MNH.0b013e328355cb47.
2
Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18010-5. doi: 10.1073/pnas.1009399107. Epub 2010 Oct 4.
3
Paracellular transport in the collecting duct.
Curr Opin Nephrol Hypertens. 2016 Sep;25(5):424-8. doi: 10.1097/MNH.0000000000000253.
6
Expression of claudin-8 is induced by aldosterone in renal collecting duct principal cells.
Am J Physiol Renal Physiol. 2021 Nov 1;321(5):F645-F655. doi: 10.1152/ajprenal.00207.2021. Epub 2021 Oct 4.
7
Claudin-16 and claudin-19 function in the thick ascending limb.
Curr Opin Nephrol Hypertens. 2010 Sep;19(5):483-8. doi: 10.1097/MNH.0b013e32833b7125.
8
Physiological roles of claudins in kidney tubule paracellular transport.
Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F9-F24. doi: 10.1152/ajprenal.00204.2016. Epub 2016 Oct 26.
9
The Cap1-claudin-4 regulatory pathway is important for renal chloride reabsorption and blood pressure regulation.
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):E3766-74. doi: 10.1073/pnas.1406741111. Epub 2014 Aug 25.
10
Claudins in the Renal Collecting Duct.
Int J Mol Sci. 2019 Dec 28;21(1):221. doi: 10.3390/ijms21010221.

引用本文的文献

1
Lithium in the Kidney: Friend and Foe?
J Am Soc Nephrol. 2016 Jun;27(6):1587-95. doi: 10.1681/ASN.2015080907. Epub 2015 Nov 17.
4
The kidney tight junction (Review).
Int J Mol Med. 2014 Dec;34(6):1451-7. doi: 10.3892/ijmm.2014.1955. Epub 2014 Oct 1.

本文引用的文献

1
ENaC inhibition stimulates Cl- secretion in the mouse cortical collecting duct through an NKCC1-dependent mechanism.
Am J Physiol Renal Physiol. 2012 Jul 1;303(1):F45-55. doi: 10.1152/ajprenal.00030.2012. Epub 2012 Apr 11.
2
Regulation of extracellular fluid volume and blood pressure by pendrin.
Cell Physiol Biochem. 2011;28(3):505-12. doi: 10.1159/000335116. Epub 2011 Nov 18.
3
Claudins in renal physiology and disease.
Pediatr Nephrol. 2011 Dec;26(12):2133-42. doi: 10.1007/s00467-011-1824-y. Epub 2011 Mar 2.
4
Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18010-5. doi: 10.1073/pnas.1009399107. Epub 2010 Oct 4.
6
Renal salt wasting and chronic dehydration in claudin-7-deficient mice.
Am J Physiol Renal Physiol. 2010 Jan;298(1):F24-34. doi: 10.1152/ajprenal.00450.2009. Epub 2009 Sep 16.
7
Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density.
Nat Genet. 2009 Aug;41(8):926-30. doi: 10.1038/ng.404. Epub 2009 Jun 28.
9
The density of small tight junction pores varies among cell types and is increased by expression of claudin-2.
J Cell Sci. 2008 Feb 1;121(Pt 3):298-305. doi: 10.1242/jcs.021485. Epub 2008 Jan 15.
10
Formation of tight junction: determinants of homophilic interaction between classic claudins.
FASEB J. 2008 Jan;22(1):146-58. doi: 10.1096/fj.07-8319com. Epub 2007 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验