Division of Cardiovascular Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA.
J Am Coll Cardiol. 2012 Aug 14;60(7):618-25. doi: 10.1016/j.jacc.2012.02.053. Epub 2012 Jun 13.
OBJECTIVES: This study sought to evaluate the contribution of microvascular functional rarefaction and changes in vascular mechanical properties to the development of hypertension and secondary ventricular remodeling that occurs with anti-vascular endothelial growth factor (VEGF) therapy. BACKGROUND: Hypertension is a common side effect of VEGF inhibitors used in cancer medicine. METHODS: Mice were treated for 5 weeks with an anti-murine VEGF-A monoclonal antibody, antibody plus ramipril, or sham treatment. Microvascular blood flow (MBF) and blood volume (MBV) were quantified by contrast-enhanced ultrasound in skeletal muscle, left ventricle (LV), and kidney. Echocardiography and invasive hemodynamics were used to assess ventricular function, dimensions and vascular mechanical properties. RESULTS: Ambulatory blood pressure increased gradually over the first 3 weeks of anti-VEGF therapy. Compared with controls, anti-VEGF-treated mice had similar aortic elastic modulus and histological appearance, but a marked increase in arterial elastance, indicating increased afterload, and elevated plasma angiotensin II. Increased afterload in treated mice led to concentric LV remodeling and reduced stroke volume without impaired LV contractility determined by LV peak change in pressure over time (dp/dt) and the end-systolic dimension-pressure relation. Anti-VEGF therapy did not alter MBF or MBV in skeletal muscle, myocardium, or kidney; but did produce cortical mesangial glomerulosclerosis. Ramipril therapy almost entirely prevented the adverse hemodynamic effects, increased afterload, and LV remodeling in anti-VEGF-treated mice. CONCLUSIONS: Neither reduced functional microvascular density nor major alterations in arterial mechanical properties are primary causes of hypertension during anti-VEGF therapy. Inhibition of VEGF leads to an afterload mismatch state, increased angiotensin II, and LV remodeling, which are all ameliorated by angiotensin-converting enzyme inhibition.
目的:本研究旨在评估微血管功能稀疏和血管力学特性变化对血管内皮生长因子(VEGF)治疗中发生的高血压和继发性心室重构的发展的贡献。
背景:高血压是癌症治疗中使用的 VEGF 抑制剂的常见副作用。
方法:小鼠用抗鼠 VEGF-A 单克隆抗体、抗体加雷米普利或假处理治疗 5 周。对比增强超声在骨骼肌、左心室(LV)和肾脏中定量测量微血管血流(MBF)和血容量(MBV)。超声心动图和侵入性血流动力学用于评估心室功能、尺寸和血管力学特性。
结果:抗 VEGF 治疗的前 3 周,动态血压逐渐升高。与对照组相比,抗 VEGF 治疗的小鼠具有相似的主动脉弹性模量和组织学外观,但动脉僵硬度显著增加,表明后负荷增加,血管紧张素 II 水平升高。治疗小鼠的后负荷增加导致 LV 向心性重构,心搏量减少,但 LV 收缩力没有受损,通过 LV 峰值压力变化(dp/dt)和收缩末期尺寸-压力关系确定。抗 VEGF 治疗未改变骨骼肌、心肌或肾脏的 MBF 或 MBV;但确实产生了皮质间质性肾小球硬化。雷米普利治疗几乎完全预防了抗 VEGF 治疗小鼠的不良血流动力学效应、增加的后负荷和 LV 重构。
结论:在抗 VEGF 治疗期间,功能性微血管密度降低或动脉力学特性的主要改变都不是高血压的主要原因。VEGF 抑制导致后负荷不匹配状态、血管紧张素 II 增加和 LV 重构,血管紧张素转换酶抑制可改善这些改变。
J Am Coll Cardiol. 2012-6-13
Am J Physiol Renal Physiol. 2011-8-3
Am J Physiol Heart Circ Physiol. 2019-5-1
N Engl J Med. 2008-3-13
Am J Physiol Heart Circ Physiol. 2018-3-23
BMJ Case Rep. 2022-12-22
J Cardiovasc Pharmacol. 2022-10-1
Drug Deliv Transl Res. 2023-5
Front Cardiovasc Med. 2021-11-5
JACC CardioOncol. 2019-9-24
Cardiooncology. 2015-12-7
Ann Oncol. 2009-10-23
Am J Health Syst Pharm. 2009-6-1
N Engl J Med. 2008-3-13
Br J Cancer. 2007-6-18
Trends Mol Med. 2007-6
Curr Opin Nephrol Hypertens. 2007-1