Kooij Taco W A, Rauch Manuel M, Matuschewski Kai
Max Planck Institute for Infection Biology, Parasitology Unit, Berlin, Germany.
Mol Biochem Parasitol. 2012 Sep;185(1):19-26. doi: 10.1016/j.molbiopara.2012.06.001. Epub 2012 Jun 15.
Experimental reverse genetic approaches have proven powerful in the study of the biology of the malaria parasite. The murine malaria model parasite Plasmodium berghei is the genetically most amendable Plasmodium species and allows full access to the entire life cycle in vivo. Here, we describe a next-generation, highly versatile transfection vector set that facilitates advancing experimental genetic strategies towards a genome-wide scale. Through 36 consecutive cloning and 17 subcloning steps an optimized vector set was generated from the standard transfection plasmid. These targeting vectors, collectively referred to as the Berghei Adaptable Transfection (pBAT) plasmids, contain key elements that permit recycling of the drug-selectable cassette, robust green fluorescent labelling of recombinant parasites, carboxy-terminal tagging of target proteins with a red fluorescent-epitope tag fusion, and expression of heterologous genes. The vectors were further optimized for small size, versatile restriction endonuclease recognition sites and potential exchange of individual vector elements. We show that stable integration into a transgene expression site, an intergenic locus at a synteny breakpoint on P. berghei chromosome 6, is phenotypically silent and generated a bright green fluorescent parasite line for imaging applications. We provide an example, P. berghei actin 2, for targeted gene deletion and illustrate that the positive selection marker can be recycled, thereby permitting multiple rounds of genetic manipulations. We propose that the vectors described herein will greatly facilitate functional assignment to predicted and orphan Plasmodium gene models by multiple experimental genetics approaches.
实验性反向遗传学方法在疟原虫生物学研究中已被证明具有强大作用。鼠疟模型寄生虫伯氏疟原虫是遗传学上最易于改造的疟原虫物种,可在体内完整观察其整个生命周期。在此,我们描述了一套新一代的、高度通用的转染载体,有助于推动实验性遗传策略向全基因组规模发展。通过36个连续的克隆步骤和17个亚克隆步骤,从标准转染质粒中生成了一套优化的载体。这些靶向载体统称为伯氏疟原虫适应性转染(pBAT)质粒,包含允许药物选择盒循环利用、对重组寄生虫进行强绿色荧光标记、用红色荧光表位标签融合对靶蛋白进行羧基末端标记以及异源基因表达的关键元件。这些载体进一步针对小尺寸、通用的限制性内切酶识别位点以及单个载体元件的潜在交换进行了优化。我们表明,稳定整合到转基因表达位点(伯氏疟原虫6号染色体上同线性断点处的一个基因间位点)在表型上是沉默的,并产生了用于成像应用的亮绿色荧光寄生虫系。我们提供了一个靶向基因缺失的例子,即伯氏疟原虫肌动蛋白2,并说明阳性选择标记可以循环利用,从而允许进行多轮遗传操作。我们认为,本文所述的载体将通过多种实验遗传学方法极大地促进对预测的和未知的疟原虫基因模型进行功能分配。