Suppr超能文献

遗传型线粒体复合物 II 功能障碍导致儿茶酚胺能细胞成熟和存活的差异损伤。

Differential impairment of catecholaminergic cell maturation and survival by genetic mitochondrial complex II dysfunction.

机构信息

Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.

出版信息

Mol Cell Biol. 2012 Aug;32(16):3347-57. doi: 10.1128/MCB.00128-12. Epub 2012 Jun 18.

Abstract

The SDHD gene (subunit D of succinate dehydrogenase) has been shown to be involved in the generation of paragangliomas and pheochromocytomas. Loss of heterozygosity of the normal allele is necessary for tumor transformation of the affected cells. As complete SdhD deletion is lethal, we have generated mouse models carrying a "floxed" SdhD allele and either an inducible (SDHD-ESR strain) or a catecholaminergic tissue-specific (TH-SDHD strain) CRE recombinase. Ablation of both SdhD alleles in adult SDHD-ESR mice did not result in generation of paragangliomas or pheochromocytomas. In contrast, carotid bodies from these animals showed smaller volume than controls. In accord with these observations, the TH-SDHD mice had decreased cell numbers in the adrenal medulla, carotid body, and superior cervical ganglion. They also manifested inhibited postnatal maturation of mesencephalic dopaminergic neurons and progressive cell loss during the first year of life. These alterations were particularly intense in the substantia nigra, the most affected neuronal population in Parkinson's disease. Unexpectedly, TH(+) neurons in the locus coeruleus and group A13, also lacking the SdhD gene, were unaltered. These data indicate that complete loss of SdhD is not sufficient to induce tumorigenesis in mice. They suggest that substantia nigra neurons are more susceptible to mitochondrial damage than other catecholaminergic cells, particularly during a critical postnatal maturation period.

摘要

SDHD 基因(琥珀酸脱氢酶亚单位 D)已被证明参与了副神经节瘤和嗜铬细胞瘤的发生。正常等位基因的杂合性缺失是受影响细胞发生肿瘤转化的必要条件。由于完全缺失 SdhD 是致命的,因此我们已经生成了携带“ floxed” SdhD 等位基因的小鼠模型,并带有可诱导(SDHD-ESR 株)或儿茶酚胺能组织特异性(TH-SDHD 株)的 CRE 重组酶。在成年 SDHD-ESR 小鼠中,两个 SdhD 等位基因的缺失并未导致副神经节瘤或嗜铬细胞瘤的发生。相比之下,这些动物的颈动脉体体积小于对照。与这些观察结果一致,TH-SDHD 小鼠的肾上腺髓质、颈动脉体和颈上神经节中的细胞数量减少。它们还表现出中脑多巴胺能神经元出生后成熟的抑制和生命第一年的进行性细胞丢失。这些改变在黑质中尤为明显,黑质是帕金森病中受影响最严重的神经元群体。出乎意料的是,蓝斑核和 A13 群中的 TH(+)神经元也缺失了 SdhD 基因,但未发生改变。这些数据表明,完全缺失 SdhD 不足以在小鼠中诱导肿瘤发生。它们表明,黑质神经元比其他儿茶酚胺能细胞更容易受到线粒体损伤的影响,特别是在关键的出生后成熟期间。

相似文献

1
Differential impairment of catecholaminergic cell maturation and survival by genetic mitochondrial complex II dysfunction.
Mol Cell Biol. 2012 Aug;32(16):3347-57. doi: 10.1128/MCB.00128-12. Epub 2012 Jun 18.
6
7
Model animals for the study of oxidative stress from complex II.
Biochim Biophys Acta. 2013 May;1827(5):588-97. doi: 10.1016/j.bbabio.2012.10.016. Epub 2012 Nov 6.
9
Carney triad, SDH-deficient tumors, and Sdhb+/- mice share abnormal mitochondria.
Endocr Relat Cancer. 2015 Jun;22(3):345-52. doi: 10.1530/ERC-15-0069. Epub 2015 Mar 25.
10
Sensitivity of hematopoietic stem cells to mitochondrial dysfunction by SdhD gene deletion.
Cell Death Dis. 2016 Dec 8;7(12):e2516. doi: 10.1038/cddis.2016.411.

引用本文的文献

1
Mouse developmental defects, but not paraganglioma tumorigenesis, upon conditional Complex II loss in early Sox10 cells.
FASEB Bioadv. 2024 Jul 24;6(9):327-336. doi: 10.1096/fba.2024-00056. eCollection 2024 Sep.
2
Mitochondrial integrated stress response controls lung epithelial cell fate.
Nature. 2023 Aug;620(7975):890-897. doi: 10.1038/s41586-023-06423-8. Epub 2023 Aug 9.
3
The Adult Carotid Body: A Germinal Niche at the Service of Physiology.
Adv Exp Med Biol. 2023;1427:13-22. doi: 10.1007/978-3-031-32371-3_2.
4
Succinate dehydrogenase complex subunit C: Role in cellular physiology and disease.
Exp Biol Med (Maywood). 2023 Feb;248(3):263-270. doi: 10.1177/15353702221147567. Epub 2023 Jan 23.
5
Oxygen regulation of breathing is abolished in mitochondrial complex III-deficient arterial chemoreceptors.
Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2202178119. doi: 10.1073/pnas.2202178119. Epub 2022 Sep 19.
8
Model systems in SDHx-related pheochromocytoma/paraganglioma.
Cancer Metastasis Rev. 2021 Dec;40(4):1177-1201. doi: 10.1007/s10555-021-10009-z. Epub 2021 Dec 27.
9
Developmental role of PHD2 in the pathogenesis of pseudohypoxic pheochromocytoma.
Endocr Relat Cancer. 2021 Oct 18;28(12):757-772. doi: 10.1530/ERC-21-0211.
10
Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α.
Front Physiol. 2020 Nov 23;11:614893. doi: 10.3389/fphys.2020.614893. eCollection 2020.

本文引用的文献

2
SDH mutations in cancer.
Biochim Biophys Acta. 2011 Nov;1807(11):1432-43. doi: 10.1016/j.bbabio.2011.07.003. Epub 2011 Jul 13.
3
Mitochondria: the next (neurode)generation.
Neuron. 2011 Jun 23;70(6):1033-53. doi: 10.1016/j.neuron.2011.06.003.
4
Etiology and pathogenesis of Parkinson's disease.
Mov Disord. 2011 May;26(6):1049-55. doi: 10.1002/mds.23732.
5
Mitochondria and programmed cell death in Parkinson's disease: apoptosis and beyond.
Antioxid Redox Signal. 2012 May 1;16(9):883-95. doi: 10.1089/ars.2011.4074. Epub 2011 Jul 18.
6
Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates.
Nat Rev Neurosci. 2011 Jun;12(6):359-66. doi: 10.1038/nrn3039. Epub 2011 May 18.
7
Pathological mechanisms and parent-of-origin effects in hereditary paraganglioma/pheochromocytoma (PGL/PCC).
Neurogenetics. 2011 Aug;12(3):175-81. doi: 10.1007/s10048-011-0280-y. Epub 2011 Mar 9.
8
Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1.
Nature. 2010 Dec 2;468(7324):696-700. doi: 10.1038/nature09536. Epub 2010 Nov 10.
9
Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation.
Mitochondrion. 2011 Jan;11(1):155-65. doi: 10.1016/j.mito.2010.09.006. Epub 2010 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验