Department of Chemical and Pharmaceutical Sciences, INSTM, Center of Excellence for Nanostructured Materials, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
J Am Chem Soc. 2012 Jul 18;134(28):11760-6. doi: 10.1021/ja304398b. Epub 2012 Jul 10.
Rational nanostructure manipulation has been used to prepare nanocomposites in which multiwalled carbon nanotubes (MWCNTs) were embedded inside mesoporous layers of oxides (TiO(2), ZrO(2), or CeO(2)), which in turn contained dispersed metal nanoparticles (Pd or Pt). We show that the MWCNTs induce the crystallization of the oxide layer at room temperature and that the mesoporous oxide shell allows the particles to be accessible for catalytic reactions. In contrast to samples prepared in the absence of MWCNTs, both the activity and the stability of core-shell catalysts is largely enhanced, resulting in nanocomposites with remarkable performance for the water-gas-shift reaction, photocatalytic reforming of methanol, and Suzuki coupling. The modular approach shown here demonstrates that high-performance catalytic materials can be obtained through the precise organization of nanoscale building blocks.
理性的纳米结构操控被用来制备纳米复合材料,其中多壁碳纳米管(MWCNTs)被嵌入氧化物(TiO2、ZrO2 或 CeO2)的介孔层内,而介孔氧化物壳内又含有分散的金属纳米颗粒(Pd 或 Pt)。我们表明,MWCNTs 诱导氧化物层在室温下结晶,并且介孔氧化物壳允许颗粒可用于催化反应。与在没有 MWCNTs 的情况下制备的样品相比,核壳催化剂的活性和稳定性都大大增强,导致水煤气变换反应、甲醇光催化重整和铃木偶联反应的纳米复合材料具有显著的性能。这里展示的模块化方法表明,可以通过纳米级构建块的精确组织来获得高性能催化材料。