MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
Inorg Chem. 2012 Jul 2;51(13):7174-84. doi: 10.1021/ic300217v. Epub 2012 Jun 20.
Five imidazole-based anion receptors A-E are designed for cyanide anion recognition via hydrogen bonding interaction in water. Only receptors A Ru(bpy)(2)(mpipH)(2) (bpy is bipyridine and mpipH is 2-(4-methylphenyl)-imidazo[4,5-f]-1,10-phenanthroline) and E Ru(2)(bpy)(4)(mbpibH(2))(4) (mbpibH(2) is 1,3-bis([1,10]-phenanthroline-[5,6-d]imidazol-2-yl)benzene) selectively recognize CN(-) from OAc(-), F(-), Cl(-), Br(-), I(-), NO(3)(-), HSO(4)(-), ClO(4)(-), H(2)PO(4)(-), HCO(3)(-), N(3)(-), and SCN(-) anions in water (without organic solvent) at physiological conditions via formation of multiple hydrogen bonding interaction with binding constants of K(A(H2O)) = 345 ± 21 and K(E(H2O)) = 878 ± 41, respectively. The detection limits of A and E toward CN(-) in water are 100 and 5 μM, respectively. Receptor E has an appropriate pK(a2)* value (8.75) of N-H proton and a C-shape cavity structure with three-point hydrogen bonding, consisting of two NH and one cooperative phenyl CH hydrogen bonds. Appropriate acidity of N-H proton and multipoint hydrogen bonding are both important in enhancing the selectivity and sensitivity toward CN(-) in water. The phenyl CH···CN(-) hydrogen bonding interaction is observed by the HMBC NMR technique for the first time, which provides an efficient approach to directly probe the binding site of the receptor toward CN(-). Moreover, CN(-) induced emission lifetime change of the receptor has been exploited in water for the first time. The energy-optimized structure of E-CN adduct is also proposed on the basis of theoretical calculations.
设计了五个基于咪唑的阴离子受体 A-E,用于通过氢键相互作用在水中识别氰化物阴离子。只有受体 A Ru(bpy)(2)(mpipH)(2)(bpy 是联吡啶,mpipH 是 2-(4-甲基苯基)-咪唑[4,5-f]-1,10-菲咯啉)和 E Ru(2)(bpy)(4)(mbpibH(2))(4)(mbpibH(2) 是 1,3-双([1,10]-菲咯啉-[5,6-d]咪唑-2-基)苯)能够在生理条件下(无需有机溶剂)在水中通过与多个氢键相互作用选择性识别来自 OAc(-)、F(-)、Cl(-)、Br(-)、I(-)、NO(3)(-)、HSO(4)(-)、ClO(4)(-)、H(2)PO(4)(-)、HCO(3)(-)、N(3)(-)和 SCN(-)阴离子的 CN(-),结合常数分别为 K(A(H2O)) = 345 ± 21 和 K(E(H2O)) = 878 ± 41。A 和 E 在水中对 CN(-)的检测限分别为 100 和 5 μM。受体 E 的 N-H 质子具有适当的 pK(a2)* 值(8.75)和 C 形空腔结构,具有三个氢键点,由两个 NH 和一个协同的苯基 CH 氢键组成。N-H 质子的适当酸度和多点氢键对于增强水中对 CN(-)的选择性和灵敏度都很重要。HMBC NMR 技术首次观察到苯基 CH···CN(-)氢键相互作用,这为直接探测受体对 CN(-)的结合位点提供了一种有效的方法。此外,首次在水中利用受体的 CN(-)诱导的荧光寿命变化。还根据理论计算提出了 E-CN 加合物的能量优化结构。