Kuliopulos A, Talalay P, Mildvan A S
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Biochemistry. 1990 Nov 6;29(44):10271-80. doi: 10.1021/bi00496a017.
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by a conservative tautomeric transfer of the 4 beta-proton to the 6 beta-position with Tyr-14 as a general acid and Asp-38 as a general base [Kuliopulos, A., Mildvan, A. S., Shortle, D., & Talalay, P. (1989) Biochemistry 28, 149-159]. Primary, secondary, and combined deuterium kinetic isotope effects establish concerted substrate enolization to be the rate-limiting step with the wild-type enzyme [Xue, L., Talalay, P., & Mildvan, A. S. (1990) Biochemistry 29, 7491-7500]. The product of the fractional kcat values resulting from the Y14F mutation (10(-4.7)) and the D38N mutation (10(-5.6)) is comparable (10(-10.3)) to that of the double mutant Y14F + D38N (less than or equal to 10(-10.4)) which is completely inactive. Hence, the combined effects are either additive or synergistic. Quantitatively, similar effects of the two mutations on kcat/KM are found in the double mutant. Despite its inactivity, the Y14F + D38N double mutant forms crystals indistinguishable in form from those of the wild-type enzyme, tightly binds steroid substrates and substrate analogues, and immobilizes a spin-labeled steroid in an orientation indistinguishable from that found in the wild-type enzyme, indicating that the double mutant is otherwise largely intact. It is concluded that the total enzymatic activity of ketosteroid isomerase probably results from the independent and concerted functioning of Tyr-14 and Asp-38 in the rate-limiting enolization step, in accord with the perpendicular or antarafacial orientation of these two residues with respect to the enzyme-bound substrate. Synergistic effects of mutating two residues on kcat and on kcat/KM of enzyme-catalyzed multistep reactions are shown, theoretically, to occur when both residues act independently in the same step, and simple additivity occurs when this step is rate-limiting. Other conditions for additivity of the effects of mutations of kcat and kcat/KM are theoretically explored.
δ5-3-酮类固醇异构酶(EC 5.3.3.1)通过将4β-质子以保守的互变异构转移至6β-位,以Tyr-14作为广义酸、Asp-38作为广义碱,催化δ5-3-酮类固醇异构化为δ4-3-酮类固醇[库利奥普洛斯,A.,米尔德万,A. S.,肖特尔,D.,& 塔拉莱,P.(1989年)《生物化学》28卷,第149 - 159页]。一级、二级和复合氘动力学同位素效应表明,协同底物烯醇化是野生型酶的限速步骤[薛,L.,塔拉莱,P.,& 米尔德万,A. S.(1990年)《生物化学》29卷,第7491 - 7500页]。Y14F突变(10^(-4.7))和D38N突变(10^(-5.6))产生的分数kcat值的乘积(10^(-10.3))与完全无活性的双突变体Y14F + D38N(≤10^(-10.4))相当。因此,联合效应要么是相加的,要么是协同的。定量地说,在双突变体中发现这两个突变对kcat/KM有类似的影响。尽管Y14F + D38N双突变体无活性,但它形成的晶体在形态上与野生型酶的晶体无法区分,可以紧密结合类固醇底物和底物类似物,并以与野生型酶中发现的方向无法区分的方向固定一个自旋标记的类固醇,这表明双突变体在其他方面基本完整。得出的结论是,酮类固醇异构酶的总酶活性可能源于Tyr-14和Asp-38在限速烯醇化步骤中独立且协同的作用,这与这两个残基相对于酶结合底物的垂直或异面取向一致。理论上表明,当两个残基在同一步骤中独立起作用时,突变这两个残基对酶催化多步反应的kcat和kcat/KM会产生协同效应,而当该步骤是限速步骤时会出现简单相加效应。理论上还探讨了kcat和kcat/KM突变效应相加的其他条件。