Suppr超能文献

一种新型显性强肌阵挛突变 Y705C 改变了突触前甘氨酸转运体 GlyT2 的转运和生化特性。

A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2.

机构信息

Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid 28049, Spain.

出版信息

J Biol Chem. 2012 Aug 17;287(34):28986-9002. doi: 10.1074/jbc.M111.319244. Epub 2012 Jun 29.

Abstract

Hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder. However, recessive mutations in the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 gene (SLC6A5) are rapidly emerging as a second major cause of startle disease. In this study, systematic DNA sequencing of SLC6A5 revealed a new dominant GlyT2 mutation: pY705C (c.2114A→G) in transmembrane domain 11, in eight individuals from Spain and the United Kingdom. Curiously, individuals harboring this mutation show significant variation in clinical presentation. In addition to classical hyperekplexia symptoms, some individuals had abnormal respiration, facial dysmorphism, delayed motor development, or intellectual disability. We functionally characterized this mutation using molecular modeling, electrophysiology, [(3)H]glycine transport, cell surface expression, and cysteine labeling assays. We found that the introduced cysteine interacts with the cysteine pair Cys-311-Cys-320 in the second external loop of GlyT2. This interaction impairs transporter maturation through the secretory pathway, reduces surface expression, and inhibits transport function. Additionally, Y705C presents altered H(+) and Zn(2+) dependence of glycine transport that may affect the function of glycinergic neurotransmission in vivo.

摘要

肌阵挛性张力障碍或惊吓病的特征是对触觉或听觉刺激产生过度惊吓反应,导致肌肉强直和呼吸暂停发作。尽管这种罕见的孤儿病可能会产生严重后果,包括婴儿猝死,但人类甘氨酸受体 (GlyR) α1 基因 (GLRA1) 的显性和隐性突变是这种疾病的主要原因。然而,突触前钠离子/氯离子依赖性甘氨酸转运体 GlyT2 基因 (SLC6A5) 的隐性突变正迅速成为惊吓病的第二个主要原因。在这项研究中,对 SLC6A5 的系统 DNA 测序揭示了一种新的显性 GlyT2 突变:pY705C(c.2114A→G),位于跨膜域 11 中,在来自西班牙和英国的 8 个人中发现。奇怪的是,携带这种突变的个体在临床表现上存在显著差异。除了经典的肌阵挛性张力障碍症状外,一些个体还存在呼吸异常、面部畸形、运动发育迟缓或智力残疾。我们使用分子建模、电生理学、[(3)H]甘氨酸转运、细胞表面表达和半胱氨酸标记测定法对该突变进行了功能表征。我们发现引入的半胱氨酸与 GlyT2 第二外环中的半胱氨酸对 Cys-311-Cys-320 相互作用。这种相互作用通过分泌途径损害转运体的成熟,减少表面表达,并抑制转运功能。此外,Y705C 对甘氨酸转运的 H(+)和 Zn(2+)依赖性发生改变,这可能会影响体内甘氨酸能神经传递的功能。

相似文献

1
A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2.
J Biol Chem. 2012 Aug 17;287(34):28986-9002. doi: 10.1074/jbc.M111.319244. Epub 2012 Jun 29.
2
Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease.
J Biol Chem. 2012 Aug 17;287(34):28975-85. doi: 10.1074/jbc.M112.372094. Epub 2012 Jun 14.
3
Molecular basis of the dominant negative effect of a glycine transporter 2 mutation associated with hyperekplexia.
J Biol Chem. 2015 Jan 23;290(4):2150-65. doi: 10.1074/jbc.M114.587055. Epub 2014 Dec 5.
4
Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease.
Nat Genet. 2006 Jul;38(7):801-6. doi: 10.1038/ng1814. Epub 2006 Jun 4.
5
Hyperekplexia-associated mutations in the neuronal glycine transporter 2.
Neurochem Int. 2019 Feb;123:95-100. doi: 10.1016/j.neuint.2018.05.014. Epub 2018 May 30.
6
Rescue of two trafficking-defective variants of the neuronal glycine transporter GlyT2 associated to hyperekplexia.
Neuropharmacology. 2021 May 15;189:108543. doi: 10.1016/j.neuropharm.2021.108543. Epub 2021 Mar 29.
7
Molecular mechanisms of glycine transporter GlyT2 mutations in startle disease.
Biol Chem. 2012 Apr;393(4):283-9. doi: 10.1515/BC-2011-232.
8
Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia.
J Neurosci. 2010 Jul 14;30(28):9612-20. doi: 10.1523/JNEUROSCI.1763-10.2010.
9
Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia.
Biochem Biophys Res Commun. 2006 Sep 22;348(2):400-5. doi: 10.1016/j.bbrc.2006.07.080. Epub 2006 Jul 26.
10
GLRB is the third major gene of effect in hyperekplexia.
Hum Mol Genet. 2013 Mar 1;22(5):927-40. doi: 10.1093/hmg/dds498. Epub 2012 Nov 25.

引用本文的文献

1
A New GlyT2 Variant Associated with Hyperekplexia.
Int J Mol Sci. 2025 Jul 14;26(14):6753. doi: 10.3390/ijms26146753.
2
The emerging role of glycine receptor α2 subunit defects in neurodevelopmental disorders.
Front Mol Neurosci. 2025 Feb 11;18:1550863. doi: 10.3389/fnmol.2025.1550863. eCollection 2025.
3
Startle Disease: New Molecular Insights into an Old Neurological Disorder.
Neuroscientist. 2023 Dec;29(6):767-781. doi: 10.1177/10738584221104724. Epub 2022 Jun 25.
4
Advances in hyperekplexia and other startle syndromes.
Neurol Sci. 2021 Oct;42(10):4095-4107. doi: 10.1007/s10072-021-05493-8. Epub 2021 Aug 11.
5
Structural Determinants of the Neuronal Glycine Transporter 2 for the Selective Inhibitors ALX1393 and ORG25543.
ACS Chem Neurosci. 2021 Jun 2;12(11):1860-1872. doi: 10.1021/acschemneuro.0c00602. Epub 2021 May 18.
6
Calcium-Dependent Regulation of the Neuronal Glycine Transporter GlyT2 by M2 Muscarinic Acetylcholine Receptors.
Neurochem Res. 2022 Jan;47(1):190-203. doi: 10.1007/s11064-021-03298-x. Epub 2021 Mar 25.
8
The Creatine Transporter Unfolded: A Knotty Premise in the Cerebral Creatine Deficiency Syndrome.
Front Synaptic Neurosci. 2020 Oct 23;12:588954. doi: 10.3389/fnsyn.2020.588954. eCollection 2020.
9
Glycinergic transmission: glycine transporter GlyT2 in neuronal pathologies.
Neuronal Signal. 2016 Dec 22;1(1):NS20160009. doi: 10.1042/NS20160009. eCollection 2017 Feb.
10
A comparison of the transport kinetics of glycine transporter 1 and glycine transporter 2.
J Gen Physiol. 2019 Aug 5;151(8):1035-1050. doi: 10.1085/jgp.201912318. Epub 2019 Jul 3.

本文引用的文献

1
X-ray structures of LeuT in substrate-free outward-open and apo inward-open states.
Nature. 2012 Jan 9;481(7382):469-74. doi: 10.1038/nature10737.
3
Endocytosis of the neuronal glycine transporter GLYT2: role of membrane rafts and protein kinase C-dependent ubiquitination.
Traffic. 2011 Dec;12(12):1850-67. doi: 10.1111/j.1600-0854.2011.01278.x. Epub 2011 Oct 9.
4
External Cu2+ inhibits human epithelial Na+ channels by binding at a subunit interface of extracellular domains.
J Biol Chem. 2011 Aug 5;286(31):27436-46. doi: 10.1074/jbc.M111.232058. Epub 2011 Jun 9.
5
Molecular basis of the differential interaction with lithium of glycine transporters GLYT1 and GLYT2.
J Neurochem. 2011 Jul;118(2):195-204. doi: 10.1111/j.1471-4159.2011.07309.x. Epub 2011 Jun 2.
6
Zinc in neurotransmission.
Annu Rev Nutr. 2011 Aug 21;31:139-53. doi: 10.1146/annurev-nutr-072610-145218.
7
P2Y purinergic regulation of the glycine neurotransmitter transporters.
J Biol Chem. 2011 Mar 25;286(12):10712-24. doi: 10.1074/jbc.M110.167056. Epub 2011 Jan 18.
8
Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia.
J Neurosci. 2010 Jul 14;30(28):9612-20. doi: 10.1523/JNEUROSCI.1763-10.2010.
9
Interactions and oligomerization of hantavirus glycoproteins.
J Virol. 2010 Jan;84(1):227-42. doi: 10.1128/JVI.00481-09.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验