Marchiori M C L, Ourique A F, da Silva C de B, Raffin R P, Pohlmann A R, Guterres S S, Beck R C R
Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Roraima, 1000, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
J Nanosci Nanotechnol. 2012 Mar;12(3):2059-67. doi: 10.1166/jnn.2012.5192.
The influence of the spray-drying process on the ability of engineered lipid-core nanocapsules to protect tretinoin against UV degradation was evaluated. This approach represents a technological alternative to improve the microbiological stability, storage and transport properties of such formulations. Tretinoin-loaded lipid-core nanocapsules or tretinoin-loaded nanoemulsion were dispersed in lactose (10% w/v) and fed in the spray-drier to obtain a solid product (spray-dried powder containing tretinoin-loaded nanocapsules or nanoemulsion--SD-TTN-NCL or SD-TTN-NE, respectively). SD-TTN-NE showed a lower (p < or = 0.05) percentage of encapsulation (89 +/- 1%) compared to SD-TTN-NCL (94 +/- 2%). Redispersed SD-TTN-NCL and SD-TTN-NE showed z-average sizes of 204 +/- 2 nm and 251 +/- 9 nm, which were close to those of the original suspensions (220 +/- 3 nm and 239 +/- 14 nm, respectively). Similar percentage of photodegradation were determined for tretinoin loaded in nanocapsules (26.15 +/- 4.34%) or in the respective redispersed spray-dried powder (28.73 +/- 6.19 min) after 60 min of UVA radiation exposure (p > 0.05). Our experimental design showed for the first time that spray-dried lipid-core nanocapsules are able to protect tretinoin against UVA radiation, suggesting that the drying process did not alter the supramolecular structure of the lipid-core nanocapsules. Such powders are potential intermediate products for the development of nanomedicines containing tretinoin.
评估了喷雾干燥工艺对工程化脂质核纳米囊保护维甲酸免受紫外线降解能力的影响。这种方法是一种技术替代方案,可改善此类制剂的微生物稳定性、储存和运输特性。将负载维甲酸的脂质核纳米囊或负载维甲酸的纳米乳剂分散在乳糖(10% w/v)中,并进料到喷雾干燥器中以获得固体产品(分别含有负载维甲酸纳米囊或纳米乳剂的喷雾干燥粉末 - SD-TTN-NCL或SD-TTN-NE)。与SD-TTN-NCL(94±2%)相比,SD-TTN-NE的包封率较低(p≤0.05)(89±1%)。重新分散的SD-TTN-NCL和SD-TTN-NE的z平均粒径分别为204±2 nm和251±9 nm,与原始悬浮液的粒径(分别为220±3 nm和239±14 nm)相近。在UVA辐射暴露60分钟后,负载在纳米囊中的维甲酸(26.15±4.34%)或相应重新分散的喷雾干燥粉末中的维甲酸(28.73±6.19分钟)的光降解百分比相似(p>0.05)。我们的实验设计首次表明,喷雾干燥的脂质核纳米囊能够保护维甲酸免受UVA辐射,这表明干燥过程未改变脂质核纳米囊的超分子结构。此类粉末是开发含维甲酸纳米药物的潜在中间产品。