Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry & Molecule Science, Wuhan University , Wuhan, 430072, China.
ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3753-8. doi: 10.1021/am300952b. Epub 2012 Jul 16.
Si-based alloy materials have received great attention as an alternative anode for high capacity and safe Li-ion batteries, but practical implementation of these materials is hindered by their poor electrochemical utilization and cyclability. To tackle this problem, we developed a core-shelled FeSi2/Si@C nanocomposite by a direct ball-milling of Fe and Si powders. Such a nanostructured composite can effectively buffer the volumetric change by alloying active Si phase with inactive FeSi2 matrix in its inner cores and prevent the aggregation of the active Si particles by outer graphite shells, so as to improve the cycling stability of the composite material. As a result, the FeSi2/Si@C composite exhibits a high Li-storage capacity of ∼1010 mA g(-1) and an excellent cyclability with 94% capacity retention after 200 cycles, showing a great promise for battery applications. More significantly, the synthetic method developed in this work possesses several advantages of low cost, zero emission, and operational simplicity, possibly to be extended for making other Li-storage alloys for large-scale applications in Li-ion batteries.
硅基合金材料作为高容量和安全锂离子电池的替代阳极受到了极大关注,但这些材料的实际应用受到其电化学利用率和循环稳定性差的阻碍。为了解决这个问题,我们通过直接球磨 Fe 和 Si 粉末开发了一种核壳结构的 FeSi2/Si@C 纳米复合材料。这种纳米结构的复合材料可以通过将活性 Si 相合金化到其内部核心的非活性 FeSi2 基体中,有效地缓冲体积变化,并通过外部石墨壳防止活性 Si 颗粒的聚集,从而提高复合材料的循环稳定性。结果,FeSi2/Si@C 复合材料表现出约 1010 mA g(-1) 的高储锂容量和优异的循环稳定性,在 200 次循环后容量保持率为 94%,在电池应用方面具有很大的应用前景。更重要的是,本工作中开发的合成方法具有成本低、零排放和操作简单等优点,可能会扩展到用于制造其他用于锂离子电池的大规模应用的储锂合金。