Suppr超能文献

亨德拉融合蛋白融合肽的序列和结构在膜融合中的作用。

Role of sequence and structure of the Hendra fusion protein fusion peptide in membrane fusion.

机构信息

Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.

出版信息

J Biol Chem. 2012 Aug 24;287(35):30035-48. doi: 10.1074/jbc.M112.367862. Epub 2012 Jul 3.

Abstract

Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.

摘要

病毒融合蛋白是一种引人入胜的分子机器,它经历剧烈的构象变化,以促进病毒-细胞膜融合。在融合过程中,蛋白质的一个疏水区,称为融合肽(FP),插入靶宿主细胞膜,随后的构象变化最终导致膜融合。I 类融合蛋白包含长度在 20 到 30 个氨基酸之间的 FP,在病毒家族内高度保守,但在家族之间不保守。为了研究亨德拉病毒(HeV)融合(F)蛋白 FP 的序列依赖性,首先将前 8 个氨基酸突变为双、单丙氨酸突变体。高度保守的甘氨酸残基的突变导致 F 蛋白表达和加工效率低下,而缬氨酸残基的取代导致融合效率低下的 F 蛋白,尽管表面表达水平为野生型。用圆二色性光谱法表明,与 HeV F FP 一部分相对应的合成肽在十二烷基磷酸胆碱胶束和小单层囊泡中采用α-螺旋二级结构。有趣的是,在整个 F 蛋白的背景下,导致细胞间融合水平降低的点突变肽的α-螺旋结构较少,在模型膜中诱导的膜无序程度较低。这些数据代表了任何副粘病毒 FP 的第一个广泛的结构-功能关系,并表明 HeV F FP 以及潜在的其他副粘病毒 FPs 可能需要α-螺旋结构来有效地进行膜去有序化和融合。

相似文献

1
Role of sequence and structure of the Hendra fusion protein fusion peptide in membrane fusion.
J Biol Chem. 2012 Aug 24;287(35):30035-48. doi: 10.1074/jbc.M112.367862. Epub 2012 Jul 3.
3
Transmembrane Domain Dissociation Is Required for Hendra Virus F Protein Fusogenic Activity.
J Virol. 2019 Oct 29;93(22). doi: 10.1128/JVI.01069-19. Print 2019 Nov 15.
6
Analysis of Hendra Virus Fusion Protein N-Terminal Transmembrane Residues.
Viruses. 2021 Nov 24;13(12):2353. doi: 10.3390/v13122353.
7
Functional analysis of the transmembrane domain in paramyxovirus F protein-mediated membrane fusion.
J Mol Biol. 2009 Feb 13;386(1):14-36. doi: 10.1016/j.jmb.2008.12.029. Epub 2008 Dec 24.
8
Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function.
J Biol Chem. 2013 Dec 13;288(50):35726-35. doi: 10.1074/jbc.M113.514554. Epub 2013 Oct 31.
10
A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion.
J Cell Biol. 2003 Oct 27;163(2):363-74. doi: 10.1083/jcb.200305130.

引用本文的文献

1
Human Paramyxovirus Infections Induce T Cells That Cross-React with Zoonotic Henipaviruses.
mBio. 2020 Jul 7;11(4):e00972-20. doi: 10.1128/mBio.00972-20.
4
Unity in diversity: shared mechanism of entry among paramyxoviruses.
Prog Mol Biol Transl Sci. 2015;129:1-32. doi: 10.1016/bs.pmbts.2014.10.001. Epub 2014 Dec 1.
5
The three lives of viral fusion peptides.
Chem Phys Lipids. 2014 Jul;181:40-55. doi: 10.1016/j.chemphyslip.2014.03.003. Epub 2014 Apr 2.
7
Paramyxovirus fusion and entry: multiple paths to a common end.
Viruses. 2012 Apr;4(4):613-36. doi: 10.3390/v4040613. Epub 2012 Apr 19.

本文引用的文献

1
Capture and imaging of a prehairpin fusion intermediate of the paramyxovirus PIV5.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20992-7. doi: 10.1073/pnas.1116034108. Epub 2011 Dec 16.
2
Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11211-6. doi: 10.1073/pnas.1104760108. Epub 2011 Jun 20.
3
Transmembrane orientation and possible role of the fusogenic peptide from parainfluenza virus 5 (PIV5) in promoting fusion.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3958-63. doi: 10.1073/pnas.1019668108. Epub 2011 Feb 14.
4
Side chain packing below the fusion peptide strongly modulates triggering of the Hendra virus F protein.
J Virol. 2010 Oct;84(20):10928-32. doi: 10.1128/JVI.01108-10. Epub 2010 Aug 11.
5
The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11341-6. doi: 10.1073/pnas.1006142107. Epub 2010 Jun 2.
6
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.
Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219. doi: 10.1080/10409230802058320.
7
Structure and plasticity of the human immunodeficiency virus gp41 fusion domain in lipid micelles and bilayers.
Biophys J. 2007 Aug 1;93(3):876-85. doi: 10.1529/biophysj.106.102335. Epub 2007 May 18.
9
A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L.
Virology. 2006 Mar 15;346(2):251-7. doi: 10.1016/j.virol.2006.01.007. Epub 2006 Feb 7.
10
Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.
J Biol Chem. 2006 Mar 3;281(9):5760-70. doi: 10.1074/jbc.M512280200. Epub 2005 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验