Suppr超能文献

核周线粒体聚集形成一个富含氧化剂的核域,是缺氧诱导转录所必需的。

Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription.

机构信息

Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.

出版信息

Sci Signal. 2012 Jul 3;5(231):ra47. doi: 10.1126/scisignal.2002712.

Abstract

Mitochondria can govern local concentrations of second messengers, such as reactive oxygen species (ROS), and mitochondrial translocation to discrete subcellular regions may contribute to this signaling function. Here, we report that exposure of pulmonary artery endothelial cells to hypoxia triggered a retrograde mitochondrial movement that required microtubules and the microtubule motor protein dynein and resulted in the perinuclear clustering of mitochondria. This subcellular redistribution of mitochondria was accompanied by the accumulation of ROS in the nucleus, which was attenuated by suppressing perinuclear clustering of mitochondria with nocodazole to destabilize microtubules or with small interfering RNA-mediated knockdown of dynein. Although suppression of perinuclear mitochondrial clustering did not affect the hypoxia-induced increase in the nuclear abundance of hypoxia-inducible factor 1α (HIF-1α) or the binding of HIF-1α to an oligonucleotide corresponding to a hypoxia response element (HRE), it eliminated oxidative modifications of the VEGF (vascular endothelial growth factor) promoter. Furthermore, suppression of perinuclear mitochondrial clustering reduced HIF-1α binding to the VEGF promoter and decreased VEGF mRNA accumulation. These findings support a model for hypoxia-induced transcriptional regulation in which perinuclear mitochondrial clustering results in ROS accumulation in the nucleus and causes oxidative base modifications in the VEGF HRE that are important for transcriptional complex assembly and VEGF mRNA expression.

摘要

线粒体可以控制第二信使(如活性氧物种(ROS))的局部浓度,而线粒体向离散亚细胞区域的易位可能有助于这种信号转导功能。在这里,我们报告暴露于低氧的肺动脉内皮细胞触发了逆行线粒体运动,该运动需要微管和微管马达蛋白动力蛋白,并导致线粒体在核周聚集。线粒体的这种亚细胞重新分布伴随着核内 ROS 的积累,用 nocodazole 抑制核周线粒体聚集以破坏微管或用小干扰 RNA 介导的动力蛋白敲低来减轻这种积累。虽然抑制核周线粒体聚集不会影响低氧诱导的核内缺氧诱导因子 1α(HIF-1α)丰度的增加或 HIF-1α与对应于低氧反应元件(HRE)的寡核苷酸的结合,但它消除了 VEGF(血管内皮生长因子)启动子的氧化修饰。此外,抑制核周线粒体聚集减少了 HIF-1α与 VEGF 启动子的结合,并降低了 VEGF mRNA 的积累。这些发现支持了一种缺氧诱导转录调控模型,其中核周线粒体聚集导致核内 ROS 积累,并导致 VEGF HRE 中的氧化碱基修饰,这对于转录复合物组装和 VEGF mRNA 表达很重要。

相似文献

8
Hypoxic stabilization of mRNA is HIF-independent but requires mtROS.mRNA 的缺氧稳定性与 HIF 无关,但需要 mtROS。
Cell Mol Biol Lett. 2018 Oct 4;23:48. doi: 10.1186/s11658-018-0112-2. eCollection 2018.

引用本文的文献

3
Mitochondria as Regulators of Nonapoptotic Cell Death in Cancer.线粒体作为癌症中非凋亡性细胞死亡的调节因子。
MedComm (2020). 2025 Jul 23;6(8):e70244. doi: 10.1002/mco2.70244. eCollection 2025 Aug.

本文引用的文献

1
VEGF signaling inside vascular endothelial cells and beyond.血管内皮细胞内及其以外的 VEGF 信号转导。
Curr Opin Cell Biol. 2012 Apr;24(2):188-93. doi: 10.1016/j.ceb.2012.02.002. Epub 2012 Feb 25.
2
Hypoxic pulmonary vasoconstriction.低氧性肺血管收缩。
Physiol Rev. 2012 Jan;92(1):367-520. doi: 10.1152/physrev.00041.2010.
3
Regulation of metabolism by hypoxia-inducible factor 1.缺氧诱导因子1对新陈代谢的调节
Cold Spring Harb Symp Quant Biol. 2011;76:347-53. doi: 10.1101/sqb.2011.76.010678. Epub 2011 Jul 22.
5
Controlled DNA "damage" and repair in hypoxic signaling.缺氧信号中 DNA 的可控“损伤”与修复。
Respir Physiol Neurobiol. 2010 Dec 31;174(3):244-51. doi: 10.1016/j.resp.2010.08.025. Epub 2010 Sep 8.
6
DNA oxidation drives Myc mediated transcription.DNA 氧化驱动 Myc 介导的转录。
Cell Cycle. 2010 Aug 1;9(15):3002-4. doi: 10.4161/cc.9.15.12499.
8
Oxidative DNA modifications in hypoxic signaling.缺氧信号传导中的氧化性DNA修饰
Ann N Y Acad Sci. 2009 Oct;1177:140-50. doi: 10.1111/j.1749-6632.2009.05036.x.
10
Role of the intracellular localization of HIF-prolyl hydroxylases.缺氧诱导因子脯氨酰羟化酶细胞内定位的作用。
Biochim Biophys Acta. 2009 May;1793(5):792-7. doi: 10.1016/j.bbamcr.2009.01.014. Epub 2009 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验