Université de Toulouse, UPS, PHARMA-DEV, UMR 152, 118 route de Narbonne, F-31062 Toulouse cedex 9, France.
Bioelectrochemistry. 2012 Dec;88:57-64. doi: 10.1016/j.bioelechem.2012.04.001. Epub 2012 Apr 12.
Indolone-N-oxides exert high parasiticidal activity at the nanomolar level in vitro against Plasmodium falciparum, the parasite responsible for malaria. The bioreductive character of these molecules was investigated using cyclic voltammetry and EPR spectroelectrochemistry to examine the relationship between electrochemical behavior and antimalarial activity and to understand their mechanisms of action. For all the compounds (37 compounds) studied, the voltammograms recorded in acetonitrile showed a well-defined and reversible redox couple followed by a second complicated electron transfer. The first reduction (-0.88V<E(1/2)<-0.50V vs. SCE) was attributed to the reduction of the N-oxide function to form a radical nitroxide anion. The second reduction (-1.65V<E(1/2)<-1.14V vs. SCE) was assigned to the reduction of the ketone function. By coupling electrochemistry with EPR spectroscopy, the EPR spectra confirmed the formation of the nitroxide anion radical. Moreover, the experiments demonstrated that a slow protonation occurs at the carbon of the nitrone function and not at the NO function. A relationship between electrochemical behavior and indolone-N-oxide structure can be established for compounds with R(1)=-OCH(3), R(2)=H, and electron-withdrawing substituents on the phenyl group at R(3). The results help in the design of new molecules with more potent in vivo antimalarial activity.
吲哚酮-N-氧化物在纳摩尔水平上对疟原虫(引起疟疾的寄生虫)表现出很高的寄生虫杀灭活性。使用循环伏安法和 EPR 光谱电化学研究了这些分子的生物还原性质,以检查电化学行为与抗疟活性之间的关系,并了解它们的作用机制。对于所有研究的化合物(37 种化合物),在乙腈中记录的循环伏安图显示出一个定义明确且可逆的氧化还原对,随后是第二个复杂的电子转移。第一个还原(-0.88V<E(1/2)<-0.50V vs. SCE)归因于 N-氧化物功能的还原,形成自由基氮氧自由基阴离子。第二个还原(-1.65V<E(1/2)<-1.14V vs. SCE)归因于酮功能的还原。通过将电化学与 EPR 光谱学结合,EPR 光谱证实了氮氧自由基阴离子的形成。此外,实验表明,在硝酮官能团的碳原子上而不是在 NO 官能团上发生缓慢的质子化。可以为具有 R(1)=-OCH(3)、R(2)=H 和苯环上的吸电子取代基的 R(3)的吲哚酮-N-氧化物结构建立电化学行为和结构之间的关系。结果有助于设计具有更强体内抗疟活性的新分子。