Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
Epilepsia. 2012 Sep;53(9):1658-68. doi: 10.1111/j.1528-1167.2012.03588.x. Epub 2012 Jul 10.
Epileptic seizures are associated with a dysregulation of electrical brain activity on many different spatial scales. To better understand the dynamics of epileptic seizures, that is, how the seizures initiate, propagate, and terminate, it is important to consider changes of electrical brain activity on different spatial scales. Herein we set out to analyze periictal electrical brain activity on comparatively small and large spatial scales by assessing changes in single intracranial electroencephalography (EEG) signals and of averaged interdependences of pairs of EEG signals.
Single and multiple EEG signals are analyzed by combining methods from symbolic dynamics and information theory. This computationally efficient approach is chosen because at its core it consists of analyzing the occurrence of patterns and bears analogy to classical visual EEG reading. Symbolization is achieved by first mapping the EEG signals into bit strings, that is, long sequences of zeros and ones, depending solely on whether their amplitudes increase or decrease. Bit strings reflect relational aspects between consecutive values of the original EEG signals, but not the values themselves. For each bit string the relative frequencies of the different constituent short bit patterns are then determined and used to compute two information theoretical measures: (1) redundancy (R) of single bit strings characterizes electrical brain activity on a comparatively small spatial scale represented by a single EEG signal and (2) averaged pair-wise mutual information with all other bit strings (M), which allows tracking of larger-scale EEG dynamics.
We analyzed 20 periictal intracranial EEG recordings from five patients with pharmacoresistant temporal lobe epilepsy. At seizure onset, R first strongly increased and then decreased toward seizure termination, whereas M gradually increased throughout the seizure. Bit strings with maximal R were always derived from EEG signals recorded from the visually identified seizure-onset zone. When compared to the bit strings derived from other EEG signals, their M was relatively smaller. These findings are consistent with a strong but transient occurrence of information-poor, that is, redundant electrical brain activity on a smaller spatial scale, which is particularly pronounced in the seizure-onset zone. On a larger spatial scale, a progressively more collective state emerges, as revealed by increasing amounts of mutual information.
Information theoretical analysis of bit patterns derived from EEG signals helps to characterize periictal brain activity on different spatial scales in a quantitative and efficient way and may provide clinically relevant results.
癫痫发作与许多不同空间尺度的脑电活动失调有关。为了更好地理解癫痫发作的动力学,即发作如何起始、传播和终止,考虑脑电活动在不同空间尺度上的变化非常重要。在此,我们通过评估单个颅内脑电图(EEG)信号和成对 EEG 信号的平均相关性的变化,旨在分析比较小和大的空间尺度上的发作期脑电活动。
通过结合符号动力学和信息论的方法来分析单个和多个 EEG 信号。这种计算效率高的方法被选择,因为它的核心是分析模式的发生,并且与经典的视觉 EEG 阅读具有类似性。符号化是通过首先将 EEG 信号映射到比特串来实现的,即仅根据其幅度增加或减少而生成的零和一的长序列。比特串反映了原始 EEG 信号中连续值之间的关系,但不反映值本身。对于每个比特串,然后确定不同组成短比特模式的相对频率,并用于计算两个信息理论度量:(1)单个比特串的冗余(R)表征由单个 EEG 信号表示的比较小的空间尺度上的脑电活动,(2)与所有其他比特串的平均成对互信息(M),这允许跟踪更大的 EEG 动态。
我们分析了 5 名药物难治性颞叶癫痫患者的 20 个发作期颅内 EEG 记录。在发作开始时,R 首先强烈增加,然后在发作终止时降低,而 M 则在整个发作过程中逐渐增加。具有最大 R 的比特串总是来自视觉识别的发作起始区记录的 EEG 信号。与来自其他 EEG 信号的比特串相比,它们的 M 相对较小。这些发现与在较小的空间尺度上出现信息贫乏的,即冗余的脑电活动的强烈但短暂的发生一致,这在发作起始区尤为明显。在更大的空间尺度上,随着互信息量的增加,逐渐出现更具集体性的状态。
从 EEG 信号中导出的比特模式的信息论分析有助于以定量和有效的方式描述不同空间尺度上的发作期脑电活动,并且可能提供具有临床相关性的结果。