Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Japan.
J Theor Biol. 2012 Oct 7;310:206-15. doi: 10.1016/j.jtbi.2012.06.036. Epub 2012 Jul 7.
The evolution of a quantitative phenotype is often envisioned as a trait substitution sequence where mutant alleles repeatedly replace resident ones. In infinite populations, the invasion fitness of a mutant in this two-allele representation of the evolutionary process is used to characterize features about long-term phenotypic evolution, such as singular points, convergence stability (established from first-order effects of selection), branching points, and evolutionary stability (established from second-order effects of selection). Here, we try to characterize long-term phenotypic evolution in finite populations from this two-allele representation of the evolutionary process. We construct a stochastic model describing evolutionary dynamics at non-rare mutant allele frequency. We then derive stability conditions based on stationary average mutant frequencies in the presence of vanishing mutation rates. We find that the second-order stability condition obtained from second-order effects of selection is identical to convergence stability. Thus, in two-allele systems in finite populations, convergence stability is enough to characterize long-term evolution under the trait substitution sequence assumption. We perform individual-based simulations to confirm our analytic results.
定量表型的进化通常被设想为一种特征替代序列,其中突变等位基因反复取代驻留等位基因。在无限种群中,突变体在进化过程的这种二倍体表示中的入侵适应性用于描述长期表型进化的特征,例如奇点、收敛稳定性(由选择的一阶效应确定)、分支点和进化稳定性(由选择的二阶效应确定)。在这里,我们试图从进化过程的这种二倍体表示来描述有限群体中的长期表型进化。我们构建了一个随机模型,描述了非稀有突变等位基因频率下的进化动态。然后,我们基于零突变率下的固定平均突变频率推导出稳定性条件。我们发现,从选择的二阶效应中得到的二阶稳定性条件与收敛稳定性相同。因此,在有限群体的二倍体系统中,在特征替代序列假设下,收敛稳定性足以描述长期进化。我们进行了基于个体的模拟来验证我们的分析结果。