Suppr超能文献

一步蒸发诱导自组装法制备热稳定的 TiO2/SiO2 纳米复合微球。

One-step fabrication of thermally stable TiO2/SiO2 nanocomposite microspheres by evaporation-induced self-assembly.

机构信息

Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.

出版信息

Langmuir. 2012 Aug 7;28(31):11343-53. doi: 10.1021/la3022886. Epub 2012 Jul 27.

Abstract

The evaporation-induced self-assembly of mixed colloids has been employed to synthesize microspheres of TiO(2)/SiO(2) nanocomposites. Small-angle neutron/X-ray scattering and scanning electron microscopy experiments reveal the hierarchical morphology of the microspheres. Although the internal structure of the microspheres, consisting of solely silica nanoparticles, gets significantly modified with time because of the reduction in the high specific surface area by internal coalescence, the same for the composite microspheres remains stable over an aging time of 1 year. Such temporal stability of the composite microspheres is attributed to the inhibition of coalescence of the silica nanoparticles in the presence of titania nanoparticles. X-ray diffraction and thermogravimetric results show the improved thermal stability of the composite grains against the anatase-to-rutile phase transition. Such thermal stability is attributed to the suppression of the growth of titania nanoparticles in the presence of silica nanoparticles. The UV-vis results indicate the confinement effect of the TiO(2) nanoparticles in the silica matrix. A plausible mechanism has been elucidated for the formation of microspheres with different morphology during self-assembly.

摘要

蒸发诱导混合胶体的自组装已被用于合成 TiO(2)/SiO(2)纳米复合材料的微球。小角中子/ X 射线散射和扫描电子显微镜实验揭示了微球的分级形貌。尽管由于内部聚结导致高比表面积的减少,仅由二氧化硅纳米颗粒组成的微球的内部结构在时间上发生了显著变化,但由于钛纳米颗粒的存在抑制了二氧化硅纳米颗粒的聚结,复合材料微球在 1 年的老化时间内保持稳定。这种复合微球的时间稳定性归因于在存在钛纳米颗粒的情况下抑制了二氧化硅纳米颗粒的聚结。X 射线衍射和热重分析结果表明,复合颗粒对锐钛矿向金红石相转变的热稳定性得到提高。这种热稳定性归因于在存在二氧化硅纳米颗粒的情况下抑制了钛纳米颗粒的生长。UV-vis 结果表明 TiO(2)纳米颗粒在二氧化硅基质中的受限效应。已经阐明了在自组装过程中形成具有不同形态的微球的合理机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验