Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
J Control Release. 2012 Sep 10;162(2):414-21. doi: 10.1016/j.jconrel.2012.07.005. Epub 2012 Jul 16.
Our goal was to enhance ultrasound (US)-targeted skeletal muscle transfection through the use of poly(ethyleneglycol) (PEG)/polyethylenimine (PEI) nanocomplex gene carriers and adjustments to US and microbubble (MB) parameters. C57BL/6 mice received an intravenous infusion of MBs and either "naked" luciferase plasmid or luciferase plasmid condensed in PEG/PEI nanocomplexes. Pulsed ultrasound (1 MHz; 0.6 MPa or 0.8 MPa) was applied to the right hindlimb for 12 min. Luciferase activity in both hindlimbs was assessed at 3, 5, 7, and 10 days post-treatment by bioluminescent imaging. When targeted to hindlimb using unsorted MBs and 0.6 MPa US, 7 days after treatment, we observed a >60-fold increase in luciferase activity in PEG/PEI nanocomplex-treated muscles over muscles treated with "naked" plasmid DNA. Luciferase activity was consistently greater after treatment with PEG/PEI nanocomplexes at 0.6 MPa as compared to 0.8 MPa. The combination of small diameter MBs and 0.6 MPa US also resulted in significantly greater gene expression when compared to concentration matched intramuscular injections, a control condition in which considerably more PEG/PEI nanocomplexes were present in tissue. This result suggests that, in addition to facilitating PEG/PEI nanocomplex delivery from the bloodstream to tissue, US enhances transfection via one or more secondary mechanisms, including increased cellular uptake and/or trafficking to the nucleus of PEG/PEI nanocomplexes. We conclude that PEG/PEI nanocomplexes may be used to markedly enhance the amplitude of US-MB-targeted skeletal muscle transfection and that activating "small" MBs with a moderate level (0.6 MPa) of acoustic pressure can further enhance these effects.
我们的目标是通过使用聚乙二醇(PEG)/聚乙烯亚胺(PEI)纳米复合物基因载体以及调整超声(US)和微泡(MB)参数来增强超声靶向骨骼肌转染。C57BL/6 小鼠接受 MB 静脉输注和“裸”荧光素酶质粒或凝聚在 PEG/PEI 纳米复合物中的荧光素酶质粒。对右后肢施加脉冲超声(1 MHz;0.6 MPa 或 0.8 MPa)12 分钟。通过生物发光成像在治疗后 3、5、7 和 10 天评估双侧后肢的荧光素酶活性。当使用未分类的 MB 和 0.6 MPa 的 US 靶向后肢时,在治疗后 7 天,我们观察到 PEG/PEI 纳米复合物处理的肌肉中的荧光素酶活性比用“裸”质粒 DNA 处理的肌肉增加了>60 倍。与 0.8 MPa 相比,在 0.6 MPa 下用 PEG/PEI 纳米复合物处理时,荧光素酶活性始终更高。与肌肉内注射(浓度匹配的对照条件)相比,小直径 MB 和 0.6 MPa 的 US 的组合也导致基因表达显著增加,在该对照条件下,组织中存在更多的 PEG/PEI 纳米复合物。这一结果表明,除了促进 PEG/PEI 纳米复合物从血液输送到组织之外,US 还通过一种或多种次要机制增强转染,包括增加细胞摄取和/或将 PEG/PEI 纳米复合物运送到细胞核。我们得出结论,PEG/PEI 纳米复合物可用于显著增强 US-MB 靶向骨骼肌转染的幅度,并且用适度水平(0.6 MPa)声压激活“小”MB 可以进一步增强这些效果。