Copic Davor, Park Sei Jin, Tawfick Sameh, De Volder Michael, Hart A John
Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, MI, USA.
J Vis Exp. 2012 Jul 2(65):3980. doi: 10.3791/3980.
The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization (3).
新材料和新工艺引入微纳制造,在很大程度上推动了微系统、芯片实验室设备及其应用领域取得诸多重要进展。特别是,软光刻和其他微成型技术的出现,改变了聚合物微结构的经济高效制造能力(1, 2),并引发了微纳制造在生物医学工程和生物学应用方面的一场革命。然而,制造具有明确纳米级表面纹理的微结构,以及在微尺度上制造任意三维形状,仍然具有挑战性。主模具的坚固性和形状完整性的保持,对于实现复杂结构的高保真复制并保留其纳米级表面纹理尤为重要。分层纹理和异质形状的结合,对主要依赖使用固定掩膜模板的自上而下蚀刻的现有微纳制造方法构成了严峻挑战。另一方面,纳米管和纳米线等纳米结构的自下而上合成,可以为微纳制造提供新的能力,特别是通过利用纳米结构的集体自组装,以及相对于微纳制造图案对其生长行为的局部控制。我们的目标是引入垂直排列的碳纳米管(CNTs),即我们所说的碳纳米管“森林”,作为一种新型微纳制造材料。我们详细介绍了我们团队最近开发的一系列相关方法:通过热化学气相沉积(CVD)从光刻图案化的催化剂薄膜制备碳纳米管森林微结构;碳纳米管微结构的自导向弹性毛细管致密化;以及使用碳纳米管复合主模具对聚合物微结构进行复制成型。特别是,我们的工作表明,通过将溶剂冷凝到具有碳纳米管微结构的基板上进行的自导向毛细管致密化(“毛细管成型”),显著提高了碳纳米管的堆积密度。这一过程能够将垂直的碳纳米管微结构定向转变为直线、倾斜和扭曲形状,这些形状具有超过典型微纳制造聚合物的强大机械性能。这进而使得通过聚合物的毛细管驱动渗透形成纳米复合碳纳米管主模具成为可能。复制结构展现出排列整齐的碳纳米管的各向异性纳米级纹理,并且可以具有亚微米厚度的壁和超过50:1的纵横比。在制造过程中集成碳纳米管微结构,为利用碳纳米管的电学和热学性质以及实现化学和生化功能化的多样能力提供了更多机会(3)。