Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
Biochemistry. 2012 Aug 7;51(31):6047-55. doi: 10.1021/bi300694t. Epub 2012 Jul 30.
Only decades after the introduction of organophosphate pesticides, bacterial phosphotriesterases (PTEs) have evolved to catalyze their degradation with remarkable efficiency. Their closest known relatives, lactonases, with promiscuous phosphotriasterase activity, dubbed PTE-like lactonases (PLLs), share only 30% sequence identity and also differ in the configuration of their active-site loops. PTE was therefore presumed to have evolved from a yet unknown PLL whose primary activity was the hydrolysis of quorum sensing homoserine lactones (HSLs) (Afriat et al. (2006) Biochemistry 45, 13677-13686). However, how PTEs diverged from this presumed PLL remains a mystery. In this study we investigated loop remodeling as a means of reconstructing a homoserine lactonase ancestor that relates to PTE by few mutational steps. Although, in nature, loop remodeling is a common mechanism of divergence of enzymatic functions, reproducing this process in the laboratory is a challenge. Structural and phylogenetic analyses enabled us to remodel one of PTE's active-site loops into a PLL-like configuration. A deletion in loop 7, combined with an adjacent, highly epistatic, point mutation led to the emergence of an HSLase activity that is undetectable in PTE (k(cat)/K(M) values of up to 2 × 10(4)). The appearance of the HSLase activity was accompanied by only a minor decrease in PTE's paraoxonase activity. This specificity change demonstrates the potential role of bifunctional intermediates in the divergence of new enzymatic functions and highlights the critical contribution of loop remodeling to the rapid divergence of new enzyme functions.
在有机磷农药问世仅几十年后,细菌磷酸三酯酶(PTE)就进化出了高效催化其降解的能力。其已知最接近的亲缘酶,即具有混杂性磷酸三酯酶活性的内酯酶,与 PTE 的序列同一性仅为 30%,并且其活性位点环的结构也不同。因此,人们推测 PTE 是从一种未知的 PLL 进化而来的,其主要活性是水解群体感应同型半胱氨酸内酯(HSL)(Afriat 等人,2006 年,生物化学 45,13677-13686)。然而,PTE 是如何从这种假定的 PLL 中进化而来的仍然是个谜。在这项研究中,我们研究了环重塑作为一种重建与 PTE 相关的同型半胱氨酸内酯酶祖先的方法,只需经过几个突变步骤。尽管在自然界中,环重塑是酶功能分化的常见机制,但在实验室中复制这个过程是一个挑战。结构和系统发育分析使我们能够将 PTE 的一个活性位点环重塑成 PLL 样的结构。环 7 的缺失,加上相邻的、高度上位的点突变,导致出现了一种在 PTE 中无法检测到的 HSLase 活性(k(cat)/K(M) 值高达 2×10(4))。HSLase 活性的出现伴随着 PTE 的对氧磷酶活性仅略有下降。这种特异性变化表明双功能中间体在新酶功能的分化中的潜在作用,并突出了环重塑对新酶功能快速分化的关键贡献。