Suppr超能文献

黑色素瘤中的驱动基因突变全景。

A landscape of driver mutations in melanoma.

机构信息

The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

出版信息

Cell. 2012 Jul 20;150(2):251-63. doi: 10.1016/j.cell.2012.06.024.

Abstract

Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.

摘要

尽管最近对黑色素瘤遗传学有了深入的了解,但由于致癌 UV 光暴露导致的大量乘客突变,系统地寻找驱动突变仍然具有挑战性。我们开发了一种基于排列的框架来解决这一挑战,该框架利用内含子序列中的突变数据,根据每个基因的基础来控制乘客突变负荷。通过这种方法对大规模黑色素瘤外显子组数据的分析发现了六个新的黑色素瘤基因(PPP6C、RAC1、SNX31、TACC1、STK19 和 ARID2),其中三个基因(RAC1、PPP6C 和 STK19)存在反复出现的潜在可靶向突变。与染色体拷贝数数据的整合使驱动突变的景观具体化,为 BRAF 和 NRAS 驱动的黑色素瘤以及没有已知 NRAS/BRAF 突变的黑色素瘤提供了致癌见解。该景观还阐明了 RB 和 p53 通路在这种恶性肿瘤中失调的突变基础。最后,驱动突变的频谱为 UV 光在黑色素瘤发病机制中的直接诱变作用提供了明确的基因组证据。

相似文献

1
A landscape of driver mutations in melanoma.
Cell. 2012 Jul 20;150(2):251-63. doi: 10.1016/j.cell.2012.06.024.
2
Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma.
Nat Genet. 2012 Sep;44(9):1006-14. doi: 10.1038/ng.2359. Epub 2012 Jul 29.
3
Ppp6c haploinsufficiency accelerates UV-induced BRAF(V600E)-initiated melanomagenesis.
Cancer Sci. 2021 Jun;112(6):2233-2244. doi: 10.1111/cas.14895. Epub 2021 Apr 10.
4
Detection of driver mutations in FFPE samples from patients with verified malignant melanoma.
Neoplasma. 2019 Jan 15;66(1):33-38. doi: 10.4149/neo_2018_180115N31. Epub 2018 Aug 9.
5
Mutational status of naevus-associated melanomas.
Br J Dermatol. 2015 Sep;173(3):671-80. doi: 10.1111/bjd.13829. Epub 2015 Jun 19.
6
BRAF/NRAS wild-type melanomas have a high mutation load correlating with histologic and molecular signatures of UV damage.
Clin Cancer Res. 2013 Sep 1;19(17):4589-98. doi: 10.1158/1078-0432.CCR-13-0398. Epub 2013 Jul 5.
7
UVB mutagenesis differs in - and -mutant mouse models of melanoma.
Life Sci Alliance. 2021 Jul 1;4(9). doi: 10.26508/lsa.202101135. Print 2021 Sep.
8
Somatic driver mutations in melanoma.
Cancer. 2017 Jun 1;123(S11):2104-2117. doi: 10.1002/cncr.30593.
9
Clinical and pathological associations of the activating RAC1 P29S mutation in primary cutaneous melanoma.
Pigment Cell Melanoma Res. 2014 Nov;27(6):1117-25. doi: 10.1111/pcmr.12295. Epub 2014 Aug 4.
10
Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis.
Cell. 2019 Feb 21;176(5):1113-1127.e16. doi: 10.1016/j.cell.2019.01.002. Epub 2019 Jan 31.

引用本文的文献

1
Harnessing the Gut Microbiome in Cancer Immunotherapy: Mechanisms, Challenges, and Routes to Personalized Medicine-A Systematic Review.
Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251365700. doi: 10.1177/15330338251365700. Epub 2025 Aug 28.
2
Confronting Melanoma Radioresistance: Mechanisms and Therapeutic Strategies.
Cancers (Basel). 2025 Aug 14;17(16):2648. doi: 10.3390/cancers17162648.
3
A mutational process signature and genomic alterations associated with outcome and immunogenicity in cancers with brain metastasis.
Front Immunol. 2025 Jul 30;16:1607772. doi: 10.3389/fimmu.2025.1607772. eCollection 2025.
4
Gray-Horse Melanoma-A Wolf in Sheep's Clothing.
Int J Mol Sci. 2025 Jul 10;26(14):6620. doi: 10.3390/ijms26146620.
5
The Role of Human Endogenous Retroviruses in the Initiation and Progression of Melanoma.
Biomedicines. 2025 Jul 8;13(7):1662. doi: 10.3390/biomedicines13071662.
6
Targeting Skin Neoplasms: A Review of Berberine's Anticancer Properties.
Cells. 2025 Jul 8;14(14):1041. doi: 10.3390/cells14141041.
7
Specific oncogene activation of the cell of origin in mucosal melanoma.
Nat Commun. 2025 Jul 22;16(1):6750. doi: 10.1038/s41467-025-61937-1.
8
S-Nitrosylation of p53 in Melanoma Cells Under Nitrosative Stress.
Int J Mol Sci. 2025 Jul 6;26(13):6512. doi: 10.3390/ijms26136512.
9
10
Polo-like kinases and UV-induced skin carcinogenesis: What we know and what's next.
Photochem Photobiol. 2025 Jul 9. doi: 10.1111/php.70002.

本文引用的文献

1
Melanoma genome sequencing reveals frequent PREX2 mutations.
Nature. 2012 May 9;485(7399):502-6. doi: 10.1038/nature11071.
2
Mutational processes molding the genomes of 21 breast cancers.
Cell. 2012 May 25;149(5):979-93. doi: 10.1016/j.cell.2012.04.024. Epub 2012 May 17.
3
Absolute quantification of somatic DNA alterations in human cancer.
Nat Biotechnol. 2012 May;30(5):413-21. doi: 10.1038/nbt.2203.
4
From genes to drugs: targeted strategies for melanoma.
Nat Rev Cancer. 2012 Apr 5;12(5):349-61. doi: 10.1038/nrc3218.
5
Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3879-84. doi: 10.1073/pnas.1121343109. Epub 2012 Feb 17.
6
8
Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.
Nat Rev Genet. 2011 Aug 18;12(9):628-40. doi: 10.1038/nrg3046.
10
Analysis of the coding genome of diffuse large B-cell lymphoma.
Nat Genet. 2011 Jul 31;43(9):830-7. doi: 10.1038/ng.892.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验