Suppr超能文献

构建合成系统以学习自然界的设计原则。

Building synthetic systems to learn nature's design principles.

机构信息

Centre for Synthetic Biology and Innovation, Imperial College London, London, UK.

出版信息

Adv Exp Med Biol. 2012;751:411-29. doi: 10.1007/978-1-4614-3567-9_19.

Abstract

Evolution undoubtedly shapes the architecture of biological systems, yet it is unclear which features of regulatory, metabolic, and signalling circuits have adaptive significance and how the architecture of these circuits constrains or promotes evolutionary processes, such as adaptation to new environments. Experimentally rewiring circuits using genetic engineering and constructing novel circuits in living cells allows direct testing and validation of hypotheses in evolutionary systems biology. Building synthetic genetic systems enables researchers to explore regions of the genotype-phenotype and fitness landscapes that may be inaccessible to more traditional analysis. Here, we review the strategies that allow synthetic systems to be constructed and how evolutionary design principles have advanced these technologies. We also describe how building small genetic regulatory systems can provide insight on the trade-offs that constrain adaptation and can shape the structure of biological networks. In the future, the possibility of building biology de novo at the genome scale means that increasingly sophisticated models of the evolutionary dynamics of networks can be proposed and validated, and will allow us to recreate ancestral systems in the lab. This interplay between evolutionary systems theory and engineering design may illuminate the fundamental limits of performance, robustness, and evolvability of living systems.

摘要

进化无疑塑造了生物系统的结构,但尚不清楚调控、代谢和信号电路的哪些特征具有适应性意义,以及这些电路的结构如何限制或促进进化过程,例如适应新环境。使用遗传工程对电路进行实验性重布线,并在活细胞中构建新的电路,可以直接测试和验证进化系统生物学中的假设。构建合成遗传系统使研究人员能够探索基因型-表型和适应度景观的区域,这些区域可能无法通过更传统的分析来访问。在这里,我们回顾了允许构建合成系统的策略,以及进化设计原则如何推进这些技术。我们还描述了构建小型遗传调控系统如何提供有关限制适应的权衡的见解,并可以塑造生物网络的结构。在未来,以基因组规模从头构建生物学的可能性意味着可以提出和验证越来越复杂的网络进化动力学模型,并允许我们在实验室中重现祖先系统。进化系统理论和工程设计之间的这种相互作用可能会阐明生命系统性能、鲁棒性和可进化性的基本限制。

相似文献

1
Building synthetic systems to learn nature's design principles.
Adv Exp Med Biol. 2012;751:411-29. doi: 10.1007/978-1-4614-3567-9_19.
2
Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks.
Mol Biosyst. 2009 Jul;5(7):704-13. doi: 10.1039/b901484e. Epub 2009 May 14.
3
Systems approaches in understanding evolution and evolvability.
Prog Biophys Mol Biol. 2013 Dec;113(3):369-74. doi: 10.1016/j.pbiomolbio.2013.09.004. Epub 2013 Oct 9.
4
Evolutionary principles underlying structure and response dynamics of cellular networks.
Adv Exp Med Biol. 2012;751:225-47. doi: 10.1007/978-1-4614-3567-9_11.
5
Reconstructing the genotype-to-fitness map for the bacterial chemotaxis network and its emergent behavioural phenotypes.
J Theor Biol. 2017 May 7;420:200-212. doi: 10.1016/j.jtbi.2017.03.016. Epub 2017 Mar 18.
6
Organization principles in genetic interaction networks.
Adv Exp Med Biol. 2012;751:53-78. doi: 10.1007/978-1-4614-3567-9_3.
7
The molecular origins of evolutionary innovations.
Trends Genet. 2011 Oct;27(10):397-410. doi: 10.1016/j.tig.2011.06.002. Epub 2011 Aug 27.
8
Engineering life in synthetic systems.
Development. 2021 Jul 15;148(14). doi: 10.1242/dev.199497. Epub 2021 Jul 12.
9
The topology of robustness and evolvability in evolutionary systems with genotype-phenotype map.
J Theor Biol. 2014 Sep 7;356:144-62. doi: 10.1016/j.jtbi.2014.04.014. Epub 2014 Apr 30.
10
Engineering of synthetic mammalian gene networks.
Chem Biol. 2009 Mar 27;16(3):287-97. doi: 10.1016/j.chembiol.2009.02.005.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验