Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
Chemphyschem. 2012 Oct 8;13(14):3365-9. doi: 10.1002/cphc.201200363. Epub 2012 Jul 23.
Despite the academic and industrial importance of the chemical reaction between carbon dioxide (CO(2)) and alkanolamine, the delicate and precise monitoring of the reaction dynamics by conventional one-dimensional (1D) spectroscopy is still challenging, due to the overlapped bands and the restricted static information. Herein, we report two-dimensional infrared correlation spectroscopy (2D IR COS) and principal component analysis (PCA) on the reaction dynamics of a sterically hindered amine, 2-[(1,1-dimethylethyl)amino]ethanol (TBAE) and CO(2). The formation of carbonate rather than carbamate species, which contribute to the unusual high working capacity of ∼1 mole CO(2) per mole of TBAE at 40 °C, occurs through deprotonation of the hydroxyl group, protonation on the nitrogen atom of the amino group, and formation of a carbonate species due to the steric hindrance of the tert-butyl group. In particular, PCA captures the chemical transition into a carbonate species and the main contributions of ν(CO(2)), ν(OH), ν(C - N), and ν(C=O) bands to the carbonation, while 2D IR COS verifies the interrelation of four bands and their changes. Therefore, these results provide a powerful analytic method to understand the complex and abnormal reaction dynamics as well as the rational design strategy for the CO(2) absorbents.
尽管二氧化碳(CO(2))与烷醇胺之间的化学反应具有学术和工业重要性,但由于重叠带和有限的静态信息,传统的一维(1D)光谱法仍然难以精确监测反应动力学。在此,我们报告了受阻胺 2-[(1,1-二甲基乙基)氨基]乙醇(TBAE)与 CO(2)反应动力学的二维红外相关光谱(2D IR COS)和主成分分析(PCA)。碳酸酯而不是氨基甲酸酯的形成,导致在 40°C 时 TBAE 的工作容量异常高,约为 1 摩尔 CO(2)每摩尔,这是通过羟基的去质子化、氨基上的氮原子的质子化以及由于叔丁基的空间位阻而形成碳酸酯物种来实现的。特别是,PCA 捕获了化学转变为碳酸酯物种的过程,以及 ν(CO(2))、ν(OH)、ν(C-N)和 ν(C=O)带对碳酸化的主要贡献,而 2D IR COS 验证了四个带及其变化之间的相互关系。因此,这些结果提供了一种强大的分析方法,可以理解复杂和异常的反应动力学以及 CO(2)吸收剂的合理设计策略。