Festl Freya, Recktenwald Fabian, Yuan Chunrong, Mallot Hanspeter A
Department of Biology, University of Tübingen, Tübingen, Germany.
J Vis. 2012 Jul 20;12(7):10. doi: 10.1167/12.7.10.
Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.
人类观察者能够从光流中估计各种自我运动参数,包括旋转、平移航向、碰撞时间(TTC)、通过时间(TTP)等。对于线性自我加速或减速,即平移速度的变化的感知,人们了解得较少。虽然通过时间实验表明自我加速被忽略了,但受试者能够在不断变化的条件下保持其(感知到的)速度恒定,这表明一定存在某种自我加速或速度变化的感觉。在本文中,我们通过模拟在圆柱形和圆锥形(变窄或变宽)走廊中的飞行,分析自我加速估计与环境几何参数之间的关系。理论分析表明,可以从视网膜加速度测量中计算出一个对数自我加速参数,称为加速度率ρ。这个参数与场景的几何布局无关;如果在某个时刻已知真实的自我运动,加速度率允许在无需进一步深度-速度校准的情况下更新自我运动。然而,结果表明,受试者会系统地将自我加速与走廊变窄混淆,将自我减速与走廊变宽混淆,而在直走廊中能正确判断自我加速。我们得出结论,自我加速的判断是基于一阶视网膜流,并且没有利用加速度率或视网膜加速度。