Institute of Biostructure and Bioimaging, CNR, Naples, Italy.
J Biomol Struct Dyn. 2013;31(2):195-205. doi: 10.1080/07391102.2012.698243. Epub 2012 Jul 25.
Inactivation of revival of Mycobacterium tuberculosis from dormancy is one of the main goals of the WHO Global Plan to stop tuberculosis (TB) 2011-2015, given the huge reservoir of latently infected individuals. This process requires a group of secreted proteins, denoted as resuscitation-promoting factors (Rpfs). Of these, RpfB is the sole member indispensable for resuscitation in vivo. The first class of inhibitors of RpfB was identified among 2-nitrophenylthiocyanates. However, their inactivation mechanism is hitherto not known. To gain insight into the inactivation mechanism of one of the most promising RpfB inhibitors, 4-benzoyl-2-nitrophenyl thiocyanate, NPT7, we have performed replica exchange molecular dynamics (REMD) simulations, starting from the crystal structure of RpfB catalytic domain, derived in this study. We validated our results by resuscitation experiments of M. tuberculosis cultures. The atomic resolution crystal structure of RpfB catalytic domain identified the potential of the enzyme catalytic cleft to bind benzene rings. REMD simulations, 48 replicas, identified the key interactions for the binding of NPT7 to RpfB catalytic site. Of these, an important role is played by the thiocyanate group of NPT7. Consistently, we prove that the substitution of this group implies a complete loss of RpfB inactivation. Our results provide valuable information for modifications of NPT7 structure to enhance its binding affinity to RpfB, with the final aim of developing second-generation inhibitors of therapeutic interest in TB eradication strategy.
从休眠中复活结核分枝杆菌的失活是世界卫生组织 2011-2015 年全球结核病遏制计划的主要目标之一,因为潜伏感染个体的数量巨大。这一过程需要一组分泌蛋白,称为复苏促进因子(Rpfs)。在这些蛋白中,RpfB 是体内复苏所必需的唯一成员。第一类 RpfB 抑制剂是在 2-硝基苯硫氰酸酯中发现的。然而,它们的失活机制至今尚不清楚。为了深入了解最有前途的 RpfB 抑制剂之一,4-苯甲酰基-2-硝基苯硫氰酸酯(NPT7)的失活机制,我们进行了复制交换分子动力学(REMD)模拟,从本研究中获得的 RpfB 催化结构域的晶体结构开始。我们通过结核分枝杆菌培养物的复苏实验验证了我们的结果。RpfB 催化结构域的原子分辨率晶体结构确定了酶催化裂缝结合苯环的潜力。REMD 模拟,48 个副本,确定了 NPT7 与 RpfB 催化位点结合的关键相互作用。在这些相互作用中,NPT7 的硫氰酸根起着重要的作用。一致地,我们证明了该基团的取代意味着 RpfB 失活的完全丧失。我们的结果为 NPT7 结构的修饰提供了有价值的信息,以增强其与 RpfB 的结合亲和力,最终目的是开发具有治疗潜力的第二代抑制剂,用于结核病根除策略。