Suppr超能文献

微针的绘图光刻技术:基础原理与生物医学应用综述。

Drawing lithography for microneedles: a review of fundamentals and biomedical applications.

机构信息

Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.

出版信息

Biomaterials. 2012 Oct;33(30):7309-26. doi: 10.1016/j.biomaterials.2012.06.065. Epub 2012 Jul 24.

Abstract

A microneedle is a three-dimensional (3D) micromechanical structure and has been in the spotlight recently as a drug delivery system (DDS). Because a microneedle delivers the target drug after penetrating the skin barrier, the therapeutic effects of microneedles proceed from its 3D structural geometry. Various types of microneedles have been fabricated using subtractive micromanufacturing methods which are based on the inherently planar two-dimensional (2D) geometries. However, traditional subtractive processes are limited for flexible structural microneedles and makes functional biomedical applications for efficient drug delivery difficult. The authors of the present study propose drawing lithography as a unique additive process for the fabrication of a microneedle directly from 2D planar substrates, thus overcoming a subtractive process shortcoming. The present article provides the first overview of the principal drawing lithography technology: fundamentals and biomedical applications. The continuous drawing technique for an ultrahigh-aspect ratio (UHAR) hollow microneedle, stepwise controlled drawing technique for a dissolving microneedle, and drawing technique with antidromic isolation for a hybrid electro-microneedle (HEM) are reviewed, and efficient biomedical applications by drawing lithography-mediated microneedles as an innovative drug and gene delivery system are described. Drawing lithography herein can provide a great breakthrough in the development of materials science and biotechnology.

摘要

微针是一种三维(3D)微机械结构,最近作为药物输送系统(DDS)受到了关注。由于微针在穿透皮肤屏障后输送目标药物,因此微针的治疗效果与其 3D 结构几何形状有关。各种类型的微针已经使用基于固有二维(2D)几何形状的减法微制造方法制造。然而,传统的减法工艺对于柔性结构微针是有限的,使得高效药物输送的功能性生物医学应用变得困难。本研究的作者提出将绘图光刻作为一种独特的添加剂工艺,可直接从 2D 平面衬底上制造微针,从而克服了减法工艺的缺点。本文提供了对主要绘图光刻技术的全面概述:基础和生物医学应用。综述了用于超高纵横比(UHAR)空心微针的连续绘图技术、用于可溶解微针的分步控制绘图技术以及用于混合电微针(HEM)的反向隔离绘图技术,并描述了通过绘图光刻介导的微针作为创新药物和基因传递系统的高效生物医学应用。绘图光刻在此可以为材料科学和生物技术的发展提供重大突破。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验