Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina 27599, United States.
ACS Appl Mater Interfaces. 2012 Aug;4(8):3846-51. doi: 10.1021/am300549v. Epub 2012 Jul 26.
We have investigated the photovoltaic properties of inverted solar cells comprising a bulk heterojunction film of poly(3-hexylthiophene) and phenyl-C(61)-butyric acid methyl ester, sandwiched between an indium-tin-oxide/Al-doped zinc oxide (ZnO-Al) front, and tungsten oxide/aluminum back electrodes. The inverted solar cells convert photons to electrons at an external quantum efficiency (EQE) exceeding 70%. This is a 10-15% increase over EQEs of conventional solar cells. The increase in EQE is not fully explained by the difference in the optical transparency of electrodes, interference effects due to an optical spacer effect of the metal-oxide electrode buffer layers, or variation in charge generation profile. We propose that a large additional splitting of excited states at the ZnO-Al/polymer interface leads to the considerably large photocurrent yield in inverted cells. Our finding provides new insights into the benefits of n-type metal-oxide interlayers in bulk heterojunction solar cells, namely the splitting of excited states and conduction of free electrons simultaneously.
我们研究了由聚(3-己基噻吩)和苯基-C(61)-丁酸甲酯的本体异质结膜夹在氧化铟锡/掺铝氧化锌(ZnO-Al)前电极和氧化钨/铝背电极之间的倒置太阳能电池的光伏性能。倒置太阳能电池在外部量子效率(EQE)超过 70%的情况下将光子转化为电子。这比传统太阳能电池的 EQE 提高了 10-15%。EQE 的增加不能完全用电极的光学透明度差异、金属氧化物电极缓冲层的光学间隔效应引起的干涉效应或电荷产生分布的变化来解释。我们提出,在 ZnO-Al/聚合物界面处激发态的大量额外分裂导致倒置电池中产生相当大的光电流。我们的发现为 n 型金属氧化物层在本体异质结太阳能电池中的优势提供了新的见解,即激发态的分裂和自由电子的传导同时发生。