Suppr超能文献

加速氟-19 MRI 细胞示踪的压缩感知技术。

Accelerated fluorine-19 MRI cell tracking using compressed sensing.

机构信息

Department of Biological Sciences & the Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

Magn Reson Med. 2013 Jun;69(6):1683-90. doi: 10.1002/mrm.24414. Epub 2012 Jul 26.

Abstract

Cell tracking using perfluorocarbon labels and fluorine-19 (19F) MRI is a noninvasive approach to visualize and quantify cell populations in vivo. In this study, we investigated three-dimensional compressed sensing methods to accelerate 19F MRI data acquisition for cell tracking and evaluate the impact of acceleration on 19F signal quantification. We show that a greater than 8-fold reduction in imaging time was feasible without pronounced image degradation and with minimal impact on the image signal-to-noise ratio and 19F quantification accuracy. In 19F phantom studies, we show that apparent feature topology is maintained with compressed sensing reconstruction, and false positive signals do not appear in areas devoid of fluorine. We apply the three-dimensional compressed sensing 19F MRI methods to quantify the macrophage burden in a localized wounding-inflammation mouse model in vivo; at 8-fold image acceleration, the 19F signal distribution was accurately reproduced, with no loss in signal-to-noise ratio. Our results demonstrate that three-dimensional compressed sensing methods have potential for advancing in vivo 19F cell tracking for a wide range of preclinical and translational applications.

摘要

使用全氟碳标记物和氟-19(19F)MRI 进行细胞示踪是一种无创方法,可用于在体内可视化和定量细胞群体。在这项研究中,我们研究了三维压缩感知方法,以加速用于细胞示踪的 19F MRI 数据采集,并评估加速对 19F 信号定量的影响。我们表明,在不明显降低图像质量且对图像信噪比和 19F 定量准确性影响最小的情况下,成像时间可减少 8 倍以上。在 19F 体模研究中,我们表明压缩感知重建可保持明显特征拓扑结构,并且在没有氟的区域不会出现假阳性信号。我们将三维压缩感知 19F MRI 方法应用于体内局部创伤-炎症小鼠模型中定量巨噬细胞负荷;在 8 倍图像加速的情况下,19F 信号分布被准确再现,且信噪比无损失。我们的结果表明,三维压缩感知方法具有在广泛的临床前和转化应用中推进体内 19F 细胞示踪的潜力。

相似文献

1
Accelerated fluorine-19 MRI cell tracking using compressed sensing.
Magn Reson Med. 2013 Jun;69(6):1683-90. doi: 10.1002/mrm.24414. Epub 2012 Jul 26.
4
An iterative sparse deconvolution method for simultaneous multicolor F-MRI of multiple contrast agents.
Magn Reson Med. 2020 Jan;83(1):228-239. doi: 10.1002/mrm.27926. Epub 2019 Aug 23.
6
Undersampled MRI reconstruction with patch-based directional wavelets.
Magn Reson Imaging. 2012 Sep;30(7):964-77. doi: 10.1016/j.mri.2012.02.019. Epub 2012 Apr 13.
7
Accelerated 3D echo-planar imaging with compressed sensing for time-resolved hyperpolarized C studies.
Magn Reson Med. 2017 Feb;77(2):538-546. doi: 10.1002/mrm.26125. Epub 2016 Jan 24.
8
Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform.
Med Image Anal. 2016 Jan;27:93-104. doi: 10.1016/j.media.2015.05.012. Epub 2015 Jun 5.
10
Preclinical F MRI cell tracking at 3 Tesla.
MAGMA. 2019 Feb;32(1):123-132. doi: 10.1007/s10334-018-0715-7. Epub 2018 Nov 12.

引用本文的文献

1
Imaging of Thromboinflammation by Multispectral F MRI.
Int J Mol Sci. 2025 Mar 10;26(6):2462. doi: 10.3390/ijms26062462.
3
Feasibility and optimization ofF MRI on a clinical 3T with a large field-of-view torso coil.
Phys Med Biol. 2024 Jun 4;69(12):125002. doi: 10.1088/1361-6560/ad4d50.
4
Magnetic Resonance Imaging of Macrophage Response to Radiation Therapy.
Cancers (Basel). 2023 Dec 17;15(24):5874. doi: 10.3390/cancers15245874.
6
First fluorine-19 magnetic resonance imaging of the multiple sclerosis drug siponimod.
Theranostics. 2023 Feb 5;13(4):1217-1234. doi: 10.7150/thno.77041. eCollection 2023.
7
MRI techniques for immunotherapy monitoring.
J Immunother Cancer. 2022 Sep;10(9). doi: 10.1136/jitc-2022-004708.
9
Prognostic Value of Fluorine-19 MRI Oximetry Monitoring in cancer.
Mol Imaging Biol. 2022 Apr;24(2):208-219. doi: 10.1007/s11307-021-01648-3. Epub 2021 Oct 27.
10
Multi-targeted H/F MRI unmasks specific danger patterns for emerging cardiovascular disorders.
Nat Commun. 2021 Oct 6;12(1):5847. doi: 10.1038/s41467-021-26146-6.

本文引用的文献

1
The influence of radial undersampling schemes on compressed sensing reconstruction in breast MRI.
Magn Reson Med. 2012 Feb;67(2):363-77. doi: 10.1002/mrm.23008. Epub 2011 Jun 7.
2
In vivo imaging of inflammation in the peripheral nervous system by (19)F MRI.
Exp Neurol. 2011 Jun;229(2):494-501. doi: 10.1016/j.expneurol.2011.03.020. Epub 2011 Apr 1.
3
19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells.
Magn Reson Med. 2011 Apr;65(4):1144-53. doi: 10.1002/mrm.22702. Epub 2011 Feb 8.
4
Second order total generalized variation (TGV) for MRI.
Magn Reson Med. 2011 Feb;65(2):480-91. doi: 10.1002/mrm.22595. Epub 2010 Dec 8.
6
Application of compressed sensing to in vivo 3D ¹⁹F CSI.
J Magn Reson. 2010 Dec;207(2):262-73. doi: 10.1016/j.jmr.2010.09.006. Epub 2010 Sep 17.
7
Fluorine (19F) MRS and MRI in biomedicine.
NMR Biomed. 2011 Feb;24(2):114-29. doi: 10.1002/nbm.1570. Epub 2010 Sep 15.
8
Compressed sensing reconstruction for magnetic resonance parameter mapping.
Magn Reson Med. 2010 Oct;64(4):1114-20. doi: 10.1002/mrm.22483.
9
Compressed sensing in hyperpolarized 3He lung MRI.
Magn Reson Med. 2010 Apr;63(4):1059-69. doi: 10.1002/mrm.22302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验