Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, USA.
Inorg Chem. 2012 Aug 20;51(16):9017-28. doi: 10.1021/ic3011713. Epub 2012 Jul 27.
The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, β(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to make the π*(M═O) orbitals accessible to the addition of electrons. This result is consistent with previous extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) data that reveal that the Tc(V) is "pulled" into the -α1 framework and that may facilitate the reduction of Tc(V)O-α1 and stabilize lower Tc oxidation states. This study highlights the inequivalency of the two sites, and their impact on the chemical properties of the Tc substituted in these positions.
放射性元素锝-99(Tc,半衰期=2.1×10(5)年,β(-)为 253keV)是核燃料循环中铀-235裂变的主要副产品。Tc 也存在于放射性废物罐中和国家实验室站点和燃料后处理中心的环境中。将长寿命的 Tc 以适当和稳定的废物形式分离和储存是一个需要解决的重要问题。考虑到金属氧化物固态材料作为 Tc 的潜在储存基质,我们正在使用多金属氧酸盐(POMs)作为模型,在分子水平上研究 Tc 的氧化还原形态。在这项研究中,我们研究了单空位 Wells-Dawson 同多阴离子,α(1)-P(2)W(17)O(61)(10-)(α1)和 α(2)-P(2)W(17)O(61)(10-)(α2)的 Tc 配合物的电化学性质,以确定能够稳定从合成的 Tc(V)O 物种中获得的不移动的 Tc(IV)氧化态的金属氧化物材料的特征,并探究这些材料中 Tc 可能具有的其他可能的氧化态。实验结果与密度泛函理论(DFT)计算一致。K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))](Tc(V)O-α1)和 K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))](Tc(V)O-α2)及其铼类似物的电化学性质随 pH 值的变化表明,含 Tc 的衍生物总是比其铼类似物更容易还原。与α2 位相比,Tc 和 Re 在空缺的α1 位更容易被还原。DFT 计算阐明,铼可达到的最高氧化态为 VII,而在相同的电化学条件下,Tc 可达到的最高氧化态为 VI。Tc(V)O-α1 的 M(V)→M(IV)还原过程不受 pH 值影响或仅受轻微 pH 值影响,这表明与 M(V)O-α2(M = (99)Tc、Re)和 Re(V)O-α1 不同,该物种的还原过程不必与终端 M═O 的质子化同时发生,以使 π*(M═O)轨道能够接受电子的加成。这一结果与之前的扩展 X 射线吸收精细结构(EXAFS)和 X 射线吸收近边结构(XANES)数据一致,这些数据表明 Tc(V)被“拉入”-α1 骨架,这可能有利于 Tc(V)O-α1 的还原并稳定较低的 Tc 氧化态。这项研究强调了两个位点的不等效性及其对取代这些位置的 Tc 的化学性质的影响。