Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
J Biol Chem. 2012 Sep 21;287(39):32588-97. doi: 10.1074/jbc.M112.362509. Epub 2012 Jul 31.
Besides opening and closing, high voltage-activated calcium channels transit to a nonconducting inactivated state from which they do not re-open unless the plasma membrane is repolarized. Inactivation is critical for temporal regulation of intracellular calcium signaling and prevention of a deleterious rise in calcium concentration. R-type high voltage-activated channels inactivate fully in a few hundred milliseconds when expressed alone. However, when co-expressed with a particular β-subunit isoform, β(2a), inactivation is partial and develops in several seconds. Palmitoylation of a unique di-cysteine motif at the N terminus anchors β(2a) to the plasma membrane. The current view is that membrane-anchored β(2a) immobilizes the channel inactivation machinery and confers slow inactivation phenotype. β-Subunits contain one Src homology 3 and one guanylate kinase domain, flanked by variable regions with unknown structures. Here, we identified a short polybasic segment at the boundary of the guanylate kinase domain that slows down channel inactivation without relocating a palmitoylation-deficient β(2a) to the plasma membrane. Substitution of the positively charged residues within this segment by alanine abolishes its slow inactivation-conferring phenotype. The linker upstream from the polybasic segment, but not the N- and C-terminal variable regions, masks the effect of this determinant. These results reveal a novel mechanism for inhibiting voltage-dependent inactivation of R-type calcium channels by the β(2a)-subunit that might involve electrostatic interactions with an unknown target on the channel's inactivation machinery or its modulatory components. They also suggest that intralinker interactions occlude the action of the polybasic segment and that its functional availability is regulated by the palmitoylated state of the β(2a)-subunit.
除了开启和关闭,高电压激活钙通道从导电路径转变成非传导的失活状态,除非质膜去极化,否则它们不会重新打开。失活对于细胞内钙信号的时间调节和防止钙浓度的有害增加至关重要。单独表达时,R 型高电压激活通道在几百毫秒内完全失活。然而,当与特定的β亚基同工型β(2a)共同表达时,失活是部分的,并在几秒钟内发展。N 端独特的二半胱氨酸模体的棕榈酰化将β(2a)锚定在质膜上。目前的观点是,膜锚定的β(2a)固定通道失活机制,并赋予缓慢失活表型。β亚基包含一个Src 同源 3 结构域和一个鸟苷酸激酶结构域,被具有未知结构的可变区包围。在这里,我们在鸟苷酸激酶结构域的边界处鉴定出一个短的多碱性片段,该片段在不将棕榈酰化缺陷的β(2a)重新定位到质膜的情况下,减缓通道失活。用丙氨酸取代该片段内带正电荷的残基会消除其赋予的缓慢失活表型。多碱性片段上游的连接子,但不是 N 和 C 末端的可变区,掩盖了该决定因素的作用。这些结果揭示了β(2a)亚基抑制 R 型钙通道电压依赖性失活的新机制,该机制可能涉及与通道失活机制或其调节成分上未知靶标的静电相互作用。它们还表明,内连子相互作用阻碍了多碱性片段的作用,其功能可用性受β(2a)-亚基的棕榈酰化状态调节。