Suppr超能文献

P6981 是一种芳基膦酸,是一种新型的低纳摩尔抑制剂,可抑制 cAMP 反应元件结合蛋白与 DNA 的结合。

P6981, an arylstibonic acid, is a novel low nanomolar inhibitor of cAMP response element-binding protein binding to DNA.

机构信息

Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland 20892, USA.

出版信息

Mol Pharmacol. 2012 Nov;82(5):814-23. doi: 10.1124/mol.112.080820. Epub 2012 Jul 31.

Abstract

Several basic leucine zipper (B-ZIP) transcription factors have been implicated in cancer, substance abuse, and other pathological conditions. We previously identified arylstibonic acids that bind to B-ZIP proteins and inhibit their interaction with DNA. In this study, we used electrophoretic mobility shift assay to analyze 46 arylstibonic acids for their activity to disrupt the DNA binding of three B-ZIP [CCAAT/enhancer-binding protein α, cyclic AMP-response element-binding protein (CREB), and vitellogenin gene-binding protein (VBP)] and two basic helix-loop-helix leucine zipper (B-HLH-ZIP) [USF (upstream stimulating factor) and Mitf] proteins. Twenty-five arylstibonic acids showed activity at micromolar concentrations. The most active compound, P6981 [2-(3-stibonophenyl)malonic acid], had half-maximal inhibition at ~5 nM for CREB. Circular dichroism thermal denaturation studies indicated that P6981 binds both the B-ZIP domain and the leucine zipper. The crystal structure of an arylstibonic acid, NSC13778, bound to the VBP leucine zipper identified electrostatic interactions between both the stibonic and carboxylic acid groups of NSC13778 [(E)-3-(3-stibonophenyl)acrylic acid] and arginine side chains of VBP, which is also involved in interhelical salt bridges in the leucine zipper. P6981 induced GFP-B-ZIP chimeric proteins to partially localize to the cytoplasm, demonstrating that it is active in cells. P6981 inhibited the growth of a patient-derived clear cell sarcoma cell line whose oncogenic potential is driven by a chimeric protein EWS-ATF1 (Ewing's sarcoma protein-activating transcription factor 1), which contains the DNA binding domain of ATF1, a B-ZIP protein. NSC13778 inhibited the growth of xenografted clear cell sarcoma, and no toxicity was observed. These experiments suggest that antimony containing arylstibonic acids are promising leads for suppression of DNA binding activities of B-ZIP and B-HLH-ZIP transcription factors.

摘要

几种基本亮氨酸拉链(B-ZIP)转录因子已被牵涉到癌症、物质滥用和其他病理状况中。我们之前发现了芳基膦酸酯可以与 B-ZIP 蛋白结合并抑制其与 DNA 的相互作用。在这项研究中,我们使用电泳迁移率变动分析来分析 46 种芳基膦酸酯,以研究它们是否能破坏三种 B-ZIP [CCAAT/增强子结合蛋白α、环 AMP 反应元件结合蛋白(CREB)和卵黄蛋白原结合蛋白(VBP)]和两种碱性螺旋-环-螺旋亮氨酸拉链(B-HLH-ZIP)[USF(上游刺激因子)和 Mitf]蛋白的 DNA 结合。25 种芳基膦酸酯在微摩尔浓度下表现出活性。最活跃的化合物 P6981 [2-(3-膦酰苯基)丙二酸]对 CREB 的半数最大抑制浓度约为 5 nM。圆二色性热变性研究表明 P6981 结合 B-ZIP 结构域和亮氨酸拉链。芳基膦酸酯 NSC13778 的晶体结构与 VBP 亮氨酸拉链结合,确定了 NSC13778 [(E)-3-(3-膦酰苯基)丙烯酸]的膦酸和羧酸基团与 VBP 的精氨酸侧链之间的静电相互作用,VBP 也参与亮氨酸拉链中的螺旋间盐桥。P6981 诱导 GFP-B-ZIP 嵌合蛋白部分定位于细胞质中,表明它在细胞中是活跃的。P6981 抑制了由嵌合蛋白 EWS-ATF1(Ewing 肉瘤蛋白激活转录因子 1)驱动的患者来源的透明细胞肉瘤细胞系的生长,该蛋白包含 ATF1 的 DNA 结合结构域,是一种 B-ZIP 蛋白。NSC13778 抑制了异种移植的透明细胞肉瘤的生长,并且没有观察到毒性。这些实验表明,含锑的芳基膦酸酯是抑制 B-ZIP 和 B-HLH-ZIP 转录因子的 DNA 结合活性的有前途的先导化合物。

相似文献

1
P6981, an arylstibonic acid, is a novel low nanomolar inhibitor of cAMP response element-binding protein binding to DNA.
Mol Pharmacol. 2012 Nov;82(5):814-23. doi: 10.1124/mol.112.080820. Epub 2012 Jul 31.
2
12 Arylstibonic acids that inhibit the DNA binding of five B-ZIP dimers.
J Struct Biol. 2010 May;170(2):216-25. doi: 10.1016/j.jsb.2010.02.013. Epub 2010 Feb 20.
3
The arylstibonic acid compound NSC13746 disrupts B-ZIP binding to DNA in living cells.
Eur J Cell Biol. 2010 Jul;89(7):564-73. doi: 10.1016/j.ejcb.2009.11.029. Epub 2010 Apr 1.
6
Experimental identification of homodimerizing B-ZIP families in Homo sapiens.
J Struct Biol. 2006 Aug;155(2):130-9. doi: 10.1016/j.jsb.2006.02.018. Epub 2006 May 6.
7
SREBP-1 dimerization specificity maps to both the helix-loop-helix and leucine zipper domains: use of a dominant negative.
J Biol Chem. 2004 Mar 19;279(12):11863-74. doi: 10.1074/jbc.M308000200. Epub 2003 Dec 31.
10
Magnesium is required for specific DNA binding of the CREB B-ZIP domain.
Nucleic Acids Res. 2002 Mar 1;30(5):1240-6. doi: 10.1093/nar/30.5.1240.

引用本文的文献

1
cAMP response element-binding protein: A credible cancer drug target.
J Pharmacol Exp Ther. 2025 Apr;392(4):103529. doi: 10.1016/j.jpet.2025.103529. Epub 2025 Mar 4.
2
Biological and therapeutic insights from animal modeling of fusion-driven pediatric soft tissue sarcomas.
Dis Model Mech. 2024 Jun 1;17(6). doi: 10.1242/dmm.050704. Epub 2024 Jun 25.
3
Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update.
Cancers (Basel). 2020 Oct 28;12(11):3166. doi: 10.3390/cancers12113166.
4
What turns CREB on? And off? And why does it matter?
Cell Mol Life Sci. 2020 Oct;77(20):4049-4067. doi: 10.1007/s00018-020-03525-8. Epub 2020 Apr 28.
5
Systemic Inhibition of CREB is Well-tolerated in vivo.
Sci Rep. 2016 Oct 3;6:34513. doi: 10.1038/srep34513.
6
Advances in targeting nucleocapsid-nucleic acid interactions in HIV-1 therapy.
Virus Res. 2014 Nov 26;193:135-43. doi: 10.1016/j.virusres.2014.07.004. Epub 2014 Jul 12.
7
Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases.
Chem Rev. 2014 Jul 9;114(13):6844-79. doi: 10.1021/cr400713r. Epub 2014 May 15.
8
Identification, synthesis and evaluation of substituted benzofurazans as inhibitors of CREB-mediated gene transcription.
Bioorg Med Chem Lett. 2013 Oct 1;23(19):5371-5. doi: 10.1016/j.bmcl.2013.07.053. Epub 2013 Jul 31.

本文引用的文献

1
Chemical genetic discovery of targets and anti-targets for cancer polypharmacology.
Nature. 2012 Jun 6;486(7401):80-4. doi: 10.1038/nature11127.
2
Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status.
Am J Surg Pathol. 2012 Jul;36(7):e1-e11. doi: 10.1097/PAS.0b013e31825485c5.
3
Chemical genetics of Plasmodium falciparum.
Nature. 2010 May 20;465(7296):311-5. doi: 10.1038/nature09099.
4
Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas.
Cancer Res. 2010 May 1;70(9):3813-22. doi: 10.1158/0008-5472.CAN-09-2913. Epub 2010 Apr 13.
5
Targeting CREB for cancer therapy: friend or foe.
Curr Cancer Drug Targets. 2010 Jun;10(4):384-91. doi: 10.2174/156800910791208535.
6
The arylstibonic acid compound NSC13746 disrupts B-ZIP binding to DNA in living cells.
Eur J Cell Biol. 2010 Jul;89(7):564-73. doi: 10.1016/j.ejcb.2009.11.029. Epub 2010 Apr 1.
7
12 Arylstibonic acids that inhibit the DNA binding of five B-ZIP dimers.
J Struct Biol. 2010 May;170(2):216-25. doi: 10.1016/j.jsb.2010.02.013. Epub 2010 Feb 20.
8
XDS.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. doi: 10.1107/S0907444909047337. Epub 2010 Jan 22.
9
Targeting the cancer kinome through polypharmacology.
Nat Rev Cancer. 2010 Feb;10(2):130-7. doi: 10.1038/nrc2787.
10
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验