Suppr超能文献

时变量子输运:基于刘维尔-冯·诺依曼方程的单电子密度矩阵高效方法。

Time-dependent quantum transport: an efficient method based on Liouville-von-Neumann equation for single-electron density matrix.

机构信息

Department of Chemistry, The University of Hong Kong, Pofkulam Road, Hong Kong, China.

出版信息

J Chem Phys. 2012 Jul 28;137(4):044113. doi: 10.1063/1.4737864.

Abstract

Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010)], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.

摘要

基于我们的含时量子输运的层次运动方程[X. Zheng、G. H. Chen、Y. Mo、S. K. Koo、H. Tian、C. Y. Yam 和 Y. J. Yan,J. Chem. Phys. 133, 114101 (2010)],我们开发了一种高效准确的数值算法来求解刘维尔-冯·诺依曼方程。我们在紧束缚水平上求解了单电子密度矩阵的实时演化。计算模拟了通过原子线性链的瞬态电流,其中每个原子都由单个轨道表示。自能矩阵展开为多个洛伦兹函数,费米分布函数通过 Padé 谱分解进行评估。这种洛伦兹-Padé 分解方案用于模拟瞬态电流。通过使用足够多的洛伦兹函数来拟合自能矩阵,我们表明可以准确地处理导带谱函数和动力学响应。与传统的主方程方法相比,我们的方法效率更高,因为计算时间与系统大小呈立方关系,与模拟时间呈线性关系。因此,已经对包含多达一百个原子的系统的瞬态电流进行了模拟。由于密度泛函理论也是一种有效的单粒子理论,因此这里开发的洛伦兹-Padé 分解方案可以推广用于真实系统的第一性原理模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验