Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA.
J Chem Phys. 2012 Jul 28;137(4):044905. doi: 10.1063/1.4737931.
Genome packaging inside viral capsids is strongly influenced by the molecular size and the backbone structure of RNA∕DNA chains and their electrostatic affinity with the capsid proteins. Coarse-grained models are able to capture the generic features of non-specific interactions and provide a useful testing ground for theoretical developments. In this work, we use the classical density functional theory (DFT) within the framework of an extended primitive model for electrolyte solutions to investigate the self-organization of flexible and semi-flexible linear polyelectrolytes in spherical capsids that are permeable to small ions but not polymer segments. We compare the DFT predictions with Monte Carlo (MC) simulation for the density distributions of polymer segments and small ions at different backbone flexibilities and several solution conditions. In general, the agreement between DFT and MC is near quantitative except when the simulation results are noticeably influenced by the boundary effects. The numerical efficiency of the DFT calculations makes it promising as a useful tool for quantification of the structural and thermodynamic properties of viral nucleocapsids in vivo and at conditions pertinent to experiments.
病毒衣壳内的基因组包装强烈受到 RNA/DNA 链的分子大小和骨架结构及其与衣壳蛋白的静电亲和力的影响。粗粒模型能够捕获非特异性相互作用的一般特征,并为理论发展提供有用的测试平台。在这项工作中,我们使用经典密度泛函理论(DFT)在扩展的原始模型电解质溶液的框架内研究灵活和半灵活的线性聚合物在可渗透小离子但不可渗透聚合物片段的球形衣壳中的自组织。我们将 DFT 预测与蒙特卡罗(MC)模拟进行了比较,以研究不同骨架柔韧性和几种溶液条件下聚合物片段和小离子的密度分布。一般来说,DFT 和 MC 的一致性接近定量,除非模拟结果明显受到边界效应的影响。DFT 计算的数值效率使其有望成为一种有用的工具,可用于量化体内病毒核衣壳的结构和热力学性质,以及与实验相关的条件。