Suppr超能文献

包埋聚电解质的密度泛函理论:与蒙特卡罗模拟的比较。

Density functional theory for encapsidated polyelectrolytes: a comparison with Monte Carlo simulation.

机构信息

Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA.

出版信息

J Chem Phys. 2012 Jul 28;137(4):044905. doi: 10.1063/1.4737931.

Abstract

Genome packaging inside viral capsids is strongly influenced by the molecular size and the backbone structure of RNA∕DNA chains and their electrostatic affinity with the capsid proteins. Coarse-grained models are able to capture the generic features of non-specific interactions and provide a useful testing ground for theoretical developments. In this work, we use the classical density functional theory (DFT) within the framework of an extended primitive model for electrolyte solutions to investigate the self-organization of flexible and semi-flexible linear polyelectrolytes in spherical capsids that are permeable to small ions but not polymer segments. We compare the DFT predictions with Monte Carlo (MC) simulation for the density distributions of polymer segments and small ions at different backbone flexibilities and several solution conditions. In general, the agreement between DFT and MC is near quantitative except when the simulation results are noticeably influenced by the boundary effects. The numerical efficiency of the DFT calculations makes it promising as a useful tool for quantification of the structural and thermodynamic properties of viral nucleocapsids in vivo and at conditions pertinent to experiments.

摘要

病毒衣壳内的基因组包装强烈受到 RNA/DNA 链的分子大小和骨架结构及其与衣壳蛋白的静电亲和力的影响。粗粒模型能够捕获非特异性相互作用的一般特征,并为理论发展提供有用的测试平台。在这项工作中,我们使用经典密度泛函理论(DFT)在扩展的原始模型电解质溶液的框架内研究灵活和半灵活的线性聚合物在可渗透小离子但不可渗透聚合物片段的球形衣壳中的自组织。我们将 DFT 预测与蒙特卡罗(MC)模拟进行了比较,以研究不同骨架柔韧性和几种溶液条件下聚合物片段和小离子的密度分布。一般来说,DFT 和 MC 的一致性接近定量,除非模拟结果明显受到边界效应的影响。DFT 计算的数值效率使其有望成为一种有用的工具,可用于量化体内病毒核衣壳的结构和热力学性质,以及与实验相关的条件。

相似文献

2
Entropic forces of single-chain confinement in spherical cavities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041805. doi: 10.1103/PhysRevE.82.041805. Epub 2010 Oct 22.
3
Structural transitions of encapsidated polyelectrolytes.
Eur Phys J E Soft Matter. 2008 Mar;25(3):323-34. doi: 10.1140/epje/i2007-10301-6. Epub 2008 Apr 3.
4
Monte Carlo simulations of flexible polyelectrolytes inside viral capsids with dodecahedral charge distribution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051905. doi: 10.1103/PhysRevE.75.051905. Epub 2007 May 9.
5
Monte Carlo simulations of polyelectrolytes inside viral capsids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041921. doi: 10.1103/PhysRevE.73.041921. Epub 2006 Apr 18.
6
Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
J Chem Phys. 2007 Jun 28;126(24):244902. doi: 10.1063/1.2747600.
7
Density functional study on the structures and thermodynamic properties of small ions around polyanionic DNA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011912. doi: 10.1103/PhysRevE.70.011912. Epub 2004 Jul 28.
9
Polyelectrolytic effects in semi-flexible carboxylate polysaccharides. Part 2.
Int J Biol Macromol. 1989 Apr;11(2):66-72. doi: 10.1016/0141-8130(89)90044-5.
10
Multiscale modeling of dendrimers and their interactions with bilayers and polyelectrolytes.
Molecules. 2009 Jan 19;14(1):423-38. doi: 10.3390/molecules14010423.

引用本文的文献

1
Theory of Weakly Polydisperse Cytoskeleton Filaments.
Polymers (Basel). 2022 May 17;14(10):2042. doi: 10.3390/polym14102042.
2
Conformations and orientational ordering of semiflexible polymers in spherical confinement.
J Chem Phys. 2017 May 21;146(19):194907. doi: 10.1063/1.4983131.

本文引用的文献

1
Energies and pressures in viruses: contribution of nonspecific electrostatic interactions.
Phys Chem Chem Phys. 2012 Mar 21;14(11):3746-65. doi: 10.1039/c1cp22756d. Epub 2011 Dec 6.
2
Encapsulation of a polyelectrolyte chain by an oppositely charged spherical surface.
J Chem Phys. 2011 Nov 21;135(19):194901. doi: 10.1063/1.3662069.
3
A theoretical model for the dynamic structure of hepatitis B nucleocapsid.
Biophys J. 2011 Nov 16;101(10):2476-84. doi: 10.1016/j.bpj.2011.10.002. Epub 2011 Nov 15.
4
Thermodynamic basis for the genome to capsid charge relationship in viral encapsidation.
Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16986-91. doi: 10.1073/pnas.1109307108. Epub 2011 Oct 3.
5
Entropic forces of single-chain confinement in spherical cavities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041805. doi: 10.1103/PhysRevE.82.041805. Epub 2010 Oct 22.
6
Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations.
J Chem Phys. 2010 Jul 28;133(4):044906. doi: 10.1063/1.3463426.
7
Mechanisms of capsid assembly around a polymer.
Biophys J. 2010 Jul 21;99(2):619-28. doi: 10.1016/j.bpj.2010.04.035.
9
Viral assembly: a molecular modeling perspective.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10553-64. doi: 10.1039/b912884k. Epub 2009 Oct 19.
10
Structural comparisons of hepatitis B core antigen particles with different C-terminal lengths.
Virus Res. 2010 May;149(2):241-4. doi: 10.1016/j.virusres.2010.01.020. Epub 2010 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验