Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
ACS Chem Neurosci. 2012 Apr 18;3(4):238-47. doi: 10.1021/cn200126p. Epub 2012 Feb 10.
Histamine is recognized as a neurotransmitter or neuromodulator in the brain, and it plays a major role in the pathogenic progression after cerebral ischemia. Extracellular histamine increases gradually after ischemia, and this may come from histaminergic neurons or mast cells. Histamine alleviates neuronal damage and infarct volume, and it promotes recovery of neurological function after ischemia; the H1, H2, and H3 receptors are all involved. Further studies suggest that histamine alleviates excitotoxicity, suppresses the release of glutamate and dopamine, and inhibits inflammation and glial scar formation. Histamine may also affect cerebral blood flow by targeting to vascular smooth muscle cells, and promote neurogenesis. Moreover, endogenous histamine is an essential mediator in the cerebral ischemic tolerance. Due to its multiple actions, affecting neurons, glia, vascular cells, and inflammatory cells, histamine is likely to be an important target in cerebral ischemia. But due to its low penetration of the blood-brain barrier and its wide actions in the periphery, histamine-related agents, like H3 antagonists and carnosine, show potential for cerebral ischemia therapy. However, important questions about the molecular aspects and pathophysiology of histamine and related agents in cerebral ischemia remain to be answered to form a solid scientific basis for therapeutic application.
组胺被认为是大脑中的一种神经递质或神经调质,在脑缺血后的发病机制中起主要作用。缺血后细胞外组胺逐渐增加,这可能来自于组胺能神经元或肥大细胞。组胺减轻神经元损伤和梗死体积,并促进缺血后神经功能的恢复;H1、H2 和 H3 受体均参与其中。进一步的研究表明,组胺减轻兴奋性毒性,抑制谷氨酸和多巴胺的释放,抑制炎症和胶质瘢痕形成。组胺还可以通过作用于血管平滑肌细胞来影响脑血流,并促进神经发生。此外,内源性组胺是脑缺血耐受的重要介质。由于其多种作用,影响神经元、神经胶质细胞、血管细胞和炎性细胞,组胺可能是脑缺血的一个重要靶点。但由于其在血脑屏障中的穿透性低,在外周的作用广泛,组胺相关药物,如 H3 拮抗剂和肌肽,显示出对脑缺血治疗的潜力。然而,关于脑缺血中组胺及其相关药物的分子方面和病理生理学的重要问题仍有待回答,以形成治疗应用的坚实科学基础。