Suppr超能文献

采用 1H/13C NMR 光谱和量子化学方法阐明了典型的 18 kDa 转位蛋白配体 PK 11195 的溶液结构。

Solution structures of the prototypical 18 kDa translocator protein ligand, PK 11195, elucidated with 1H/13C NMR spectroscopy and quantum chemistry.

机构信息

Center for Molecular Modeling, Division of Computational Bioscience, Center for Information Technology, National Institutes ofHealth, Building 12a, Room 2049, Bethesda, Maryland 20892, United States.

出版信息

ACS Chem Neurosci. 2012 Apr 18;3(4):325-35. doi: 10.1021/cn3000108. Epub 2012 Feb 14.

Abstract

Eighteen kilodalton translocator protein (TSPO) is an important target for drug discovery and for clinical molecular imaging of brain and peripheral inflammatory processes. PK 11195 [1a; 1-(2-chlorophenyl)-N-methyl-(1-methylpropyl)-3-isoquinoline carboxamide] is the major prototypical high-affinity ligand for TSPO. Elucidation of the solution structure of 1a is of interest for understanding small-molecule ligand interactions with the lipophilic binding site of TSPO. Dynamic (1)H/(13)C NMR spectroscopy of 1a revealed four quite stable but interconverting rotamers, due to amide bond and 2-chlorophenyl group rotation. These rotamers have been neglected in previous descriptions of the structure of 1a and of the binding of 1a to TSPO. Here, we used quantum chemistry at the level of B3LYP/6-311+G(2d,p) to calculate (13)C and (1)H chemical shifts for the rotamers of 1a and for the very weak TSPO ligand, N-desmethyl-PK 11195 (1b). These data, plus experimental NMR data, were then used to characterize the structures of rotamers of 1a and 1b in organic solution. Energy barriers for both the amide bond and 2'-chlorophenyl group rotation of 1a were determined from dynamic (1)H NMR to be similar (ca.17 to 18 kcal/mol), and they compared well with those calculated at the level of B3LYP/6-31G*. Furthermore, the computed barrier for Z to E rotation is considerably lower in 1a(18.7 kcal/mol) than in 1b (25.4 kcal/mol). NMR (NOE) unequivocally demonstrated that the E rotamer of 1a is the more stable in solution by about 0.4 kcal/mol. These detailed structural findings will aid future TSPO ligand design and support the notion that TSPO prefers to bind ligands as amide E-rotamers.

摘要

十八 kDa 移位蛋白(TSPO)是药物发现和脑及外周炎症过程的临床分子成像的重要靶点。PK 11195[1a;1-(2-氯苯基)-N-甲基-(1-甲基丙基)-3-异喹啉甲酰胺]是 TSPO 的主要原型高亲和力配体。阐明 1a 的溶液结构对于理解小分子配体与 TSPO 的亲脂性结合位点的相互作用具有重要意义。1a 的动态(1)H/(13)C NMR 光谱显示,由于酰胺键和 2-氯苯基基团的旋转,存在四个相当稳定但可互变的构象。这些构象在以前对 1a 的结构和 1a 与 TSPO 结合的描述中被忽略了。在这里,我们使用 B3LYP/6-311+G(2d,p) 水平的量子化学计算了 1a 和非常弱的 TSPO 配体 N-去甲基-PK 11195(1b)的构象的(13)C 和(1)H 化学位移。这些数据,加上实验 NMR 数据,用于表征 1a 和 1b 在有机溶液中的构象。从动态(1)H NMR 确定 1a 的酰胺键和 2'-氯苯基基团旋转的能垒相似(约 17 至 18 kcal/mol),与 B3LYP/6-31G* 水平的计算结果吻合较好。此外,1a 中 Z 到 E 旋转的计算能垒低得多(18.7 kcal/mol)比在 1b 中(25.4 kcal/mol)。NMR(NOE)明确证明,在溶液中 1a 的 E 构象更稳定,约为 0.4 kcal/mol。这些详细的结构发现将有助于未来 TSPO 配体的设计,并支持 TSPO 更喜欢结合酰胺 E-构象的配体的观点。

相似文献

2
The mutual and dynamic role of TSPO and ligands in their binding process: An example with PK-11195.
Biochimie. 2024 Sep;224:29-40. doi: 10.1016/j.biochi.2024.03.009. Epub 2024 Mar 16.
3
A unified structural model of the mammalian translocator protein (TSPO).
J Biomol NMR. 2019 Jul;73(6-7):347-364. doi: 10.1007/s10858-019-00257-1. Epub 2019 Jun 26.
5
Structure of the mitochondrial translocator protein in complex with a diagnostic ligand.
Science. 2014 Mar 21;343(6177):1363-6. doi: 10.1126/science.1248725.
6
Structural Integrity of the A147T Polymorph of Mammalian TSPO.
Chembiochem. 2015 Jul 6;16(10):1483-9. doi: 10.1002/cbic.201500217. Epub 2015 Jun 10.
8
Characterization of the High-Affinity Drug Ligand Binding Site of Mouse Recombinant TSPO.
Int J Mol Sci. 2019 Mar 21;20(6):1444. doi: 10.3390/ijms20061444.
9
Structure of the mammalian TSPO/PBR protein.
Biochem Soc Trans. 2015 Aug;43(4):566-71. doi: 10.1042/BST20150029. Epub 2015 Aug 3.

引用本文的文献

1
Synthesis and Screening in Mice of Fluorine-Containing PET Radioligands for TSPO: Discovery of a Promising F-Labeled Ligand.
J Med Chem. 2021 Nov 25;64(22):16731-16745. doi: 10.1021/acs.jmedchem.1c01562. Epub 2021 Nov 10.
2
Insight into the Structural Features of TSPO: Implications for Drug Development.
Trends Pharmacol Sci. 2020 Feb;41(2):110-122. doi: 10.1016/j.tips.2019.11.005. Epub 2019 Dec 18.
3
Translocator protein ligands based on N-methyl-(quinolin-4-yl)oxypropanamides with properties suitable for PET radioligand development.
Eur J Med Chem. 2016 Nov 29;124:677-688. doi: 10.1016/j.ejmech.2016.08.046. Epub 2016 Aug 25.
4
Structure of the mitochondrial translocator protein in complex with a diagnostic ligand.
Science. 2014 Mar 21;343(6177):1363-6. doi: 10.1126/science.1248725.

本文引用的文献

1
PET tracers for the peripheral benzodiazepine receptor and uses thereof.
Drug Discov Today. 2010 Nov;15(21-22):933-42. doi: 10.1016/j.drudis.2010.08.012. Epub 2010 Aug 26.
2
3
The translocator protein (18 kDa): central nervous system disease and drug design.
J Med Chem. 2009 Feb 12;52(3):581-92. doi: 10.1021/jm8011678.
4
Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers.
Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2304-19. doi: 10.1007/s00259-008-0908-9. Epub 2008 Oct 1.
5
Liquid-structure forces and electrostatic modulation of biomolecular interactions in solution.
J Phys Chem B. 2007 Jan 11;111(1):227-41. doi: 10.1021/jp0647479.
6
Development of ligands for the peripheral benzodiazepine receptor.
Curr Med Chem. 2006;13(17):1991-2001. doi: 10.2174/092986706777584979.
9
The peripheral benzodiazepine receptor: a promising therapeutic drug target.
Curr Med Chem. 2003 Aug;10(16):1563-72. doi: 10.2174/0929867033457223.
10
In vivo imaging of neuroinflammation.
Eur Neuropsychopharmacol. 2002 Dec;12(6):581-6. doi: 10.1016/s0924-977x(02)00107-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验