Suppr超能文献

视皮层初级视区视觉诱发电活动的层分析。

Laminar analysis of visually evoked activity in the primary visual cortex.

机构信息

Center for Neural Science, New York University, New York, NY 10003, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13871-6. doi: 10.1073/pnas.1201478109. Epub 2012 Aug 7.

Abstract

Studying the laminar pattern of neural activity is crucial for understanding the processing of neural signals in the cerebral cortex. We measured neural population activity [multiunit spike activity (MUA) and local field potential, LFP] in Macaque primary visual cortex (V1) in response to drifting grating stimuli. Sustained visually driven MUA was at an approximately constant level across cortical depth in V1. However, sustained, visually driven, local field potential power, which was concentrated in the γ-band (20-60 Hz), was greatest at the cortical depth corresponding to cortico-cortical output layers 2, 3, and 4B. γ-band power also tends to be more sustained in the output layers. Overall, cortico-cortical output layers accounted for 67% of total γ-band activity in V1, whereas 56% of total spikes evoked by drifting gratings were from layers 2, 3, and 4B. The high-resolution layer specificity of γ-band power, the laminar distribution of MUA and γ-band activity, and their dynamics imply that neural activity in V1 is generated by laminar-specific mechanisms. In particular, visual responses of MUA and γ-band activity in cortico-cortical output layers 2, 3, and 4B seem to be strongly influenced by laminar-specific recurrent circuitry and/or feedback.

摘要

研究神经活动的层模式对于理解大脑皮层中神经信号的处理至关重要。我们测量了猕猴初级视觉皮层(V1)中对漂移光栅刺激的神经群体活动(多单位尖峰活动(MUA)和局部场电位,LFP)。在 V1 中,持续的视觉驱动 MUA 在皮层深度上大致保持恒定水平。然而,持续的、视觉驱动的、局部场电位功率集中在γ带(20-60 Hz),在对应于皮质-皮质输出层 2、3 和 4B 的皮层深度处最大。γ带功率也倾向于在输出层中更持续。总体而言,皮质-皮质输出层占 V1 中总γ带活动的 67%,而由漂移光栅诱发的总尖峰的 56%来自 2、3 和 4B 层。γ带功率的高分辨率层特异性、MUA 和 γ带活动的层分布及其动力学表明,V1 中的神经活动是由层特异性机制产生的。特别是,皮质-皮质输出层 2、3 和 4B 中的 MUA 和 γ带活动的视觉反应似乎受到层特异性递归电路和/或反馈的强烈影响。

相似文献

1
Laminar analysis of visually evoked activity in the primary visual cortex.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13871-6. doi: 10.1073/pnas.1201478109. Epub 2012 Aug 7.
2
Comparisons of the dynamics of local field potential and multiunit activity signals in macaque visual cortex.
J Neurosci. 2010 Oct 13;30(41):13739-49. doi: 10.1523/JNEUROSCI.0743-10.2010.
3
LFP power spectra in V1 cortex: the graded effect of stimulus contrast.
J Neurophysiol. 2005 Jul;94(1):479-90. doi: 10.1152/jn.00919.2004. Epub 2005 Feb 9.
4
Cortical brightness adaptation when darkness and brightness produce different dynamical states in the visual cortex.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1210-5. doi: 10.1073/pnas.1314690111. Epub 2014 Jan 7.
5
Spatial spread of the local field potential and its laminar variation in visual cortex.
J Neurosci. 2009 Sep 16;29(37):11540-9. doi: 10.1523/JNEUROSCI.2573-09.2009.
7
LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback.
J Comput Neurosci. 2010 Dec;29(3):495-507. doi: 10.1007/s10827-009-0190-2. Epub 2009 Oct 28.
8
Laminar Differences in Responses to Naturalistic Texture in Macaque V1 and V2.
J Neurosci. 2019 Dec 4;39(49):9748-9756. doi: 10.1523/JNEUROSCI.1743-19.2019. Epub 2019 Oct 30.
9
Generation of black-dominant responses in V1 cortex.
J Neurosci. 2010 Oct 6;30(40):13504-12. doi: 10.1523/JNEUROSCI.2473-10.2010.
10
Representation of concurrent stimuli by population activity in visual cortex.
Neuron. 2009 Dec 24;64(6):931-42. doi: 10.1016/j.neuron.2009.11.004.

引用本文的文献

1
Measuring the neurodevelopmental trajectory of excitatory-inhibitory balance via visual gamma oscillations.
Imaging Neurosci (Camb). 2025 Apr 6;3. doi: 10.1162/imag_a_00527. eCollection 2025.
2
Contextual responses drive a unique laminar signature in human V1.
iScience. 2025 Jun 19;28(7):112967. doi: 10.1016/j.isci.2025.112967. eCollection 2025 Jul 18.
3
A ubiquitous spectrolaminar motif across independent studies, including Mackey et al.'s own data.
bioRxiv. 2025 May 8:2025.05.07.652644. doi: 10.1101/2025.05.07.652644.
5
Three distinct gamma oscillatory networks within cortical columns in macaque monkeys' area V1.
Front Neural Circuits. 2024 Dec 13;18:1490638. doi: 10.3389/fncir.2024.1490638. eCollection 2024.
6
The gamma rhythm as a guardian of brain health.
Elife. 2024 Nov 20;13:e100238. doi: 10.7554/eLife.100238.
8
Large-scale interactions in predictive processing: oscillatory versus transient dynamics.
Trends Cogn Sci. 2025 Feb;29(2):133-148. doi: 10.1016/j.tics.2024.09.013. Epub 2024 Oct 17.
10
The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity.
PLoS Biol. 2023 Nov 9;21(11):e3002365. doi: 10.1371/journal.pbio.3002365. eCollection 2023 Nov.

本文引用的文献

1
Mechanisms of gamma oscillations.
Annu Rev Neurosci. 2012;35:203-25. doi: 10.1146/annurev-neuro-062111-150444. Epub 2012 Mar 20.
2
Untuned suppression makes a major contribution to the enhancement of orientation selectivity in macaque v1.
J Neurosci. 2011 Nov 2;31(44):15972-82. doi: 10.1523/JNEUROSCI.2245-11.2011.
4
Stimulus selectivity and spatial coherence of gamma components of the local field potential.
J Neurosci. 2011 Jun 22;31(25):9390-403. doi: 10.1523/JNEUROSCI.0645-11.2011.
5
Laminar differences in gamma and alpha coherence in the ventral stream.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11262-7. doi: 10.1073/pnas.1011284108. Epub 2011 Jun 20.
6
Infragranular sources of sustained local field potential responses in macaque primary visual cortex.
J Neurosci. 2011 Feb 9;31(6):1971-80. doi: 10.1523/JNEUROSCI.5300-09.2011.
7
Comparisons of the dynamics of local field potential and multiunit activity signals in macaque visual cortex.
J Neurosci. 2010 Oct 13;30(41):13739-49. doi: 10.1523/JNEUROSCI.0743-10.2010.
8
Generation of black-dominant responses in V1 cortex.
J Neurosci. 2010 Oct 6;30(40):13504-12. doi: 10.1523/JNEUROSCI.2473-10.2010.
9
Differences in gamma frequencies across visual cortex restrict their possible use in computation.
Neuron. 2010 Sep 9;67(5):885-96. doi: 10.1016/j.neuron.2010.08.004.
10
Neurophysiological and computational principles of cortical rhythms in cognition.
Physiol Rev. 2010 Jul;90(3):1195-268. doi: 10.1152/physrev.00035.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验