Suppr超能文献

基于血清型依赖性传播的肺炎链球菌传播的数学模型。

A mathematical model for the spread of Strepotococcus pneumoniae with transmission dependent on serotype.

机构信息

Department of Mathematics and Statistics , University of Strathclyde, Livingstone Tower, 26 Richmond Street , Glasgow, UK.

出版信息

J Biol Dyn. 2012;6 Suppl 1:72-87. doi: 10.1080/17513758.2011.592548. Epub 2011 Jun 24.

Abstract

We examine a mathematical model for the transmission of Streptococcus Pneumoniae amongst young children when the carriage transmission coefficient depends on the serotype. Carriage means pneumococcal colonization. There are two sequence types (STs) spreading in a population each of which can be expressed as one of two serotypes. We derive the differential equation model for the carriage spread and perform an equilibrium and global stability analysis on it. A key parameter is the effective reproduction number R (e). For R (e) ≤ 1,  there is only the carriage-free equilibrium (CFE) and the carriage will die out whatever be the starting values. For R (e) > 1, unless the effective reproduction numbers of the two STs are equal, in addition to the CFE there are two carriage equilibria, one for each ST. If the ST with the largest effective reproduction number is initially present, then in the long-term the carriage will tend to the corresponding equilibrium.

摘要

我们研究了肺炎链球菌在携带传播系数取决于血清型的幼儿中的传播的数学模型。携带意味着肺炎链球菌定植。有两种序列类型 (ST) 在人群中传播,每个 ST 都可以表示为两种血清型之一。我们推导出了携带传播的微分方程模型,并对其进行了平衡点和全局稳定性分析。一个关键参数是有效繁殖数 R(e)。对于 R(e)≤1,只有无携带平衡点(CFE),无论初始值如何,携带都会消失。对于 R(e)>1,除非两个 ST 的有效繁殖数相等,否则除了 CFE 之外,还有两个携带平衡点,每个 ST 一个。如果最初存在具有最大有效繁殖数的 ST,则在长期内,携带将趋于相应的平衡点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验