Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, Luxembourg.
J Colloid Interface Sci. 2012 Nov 15;386(1):366-72. doi: 10.1016/j.jcis.2012.07.030. Epub 2012 Jul 20.
The formation of "polydopamine" thin films becomes a popular method to confer multifunctionality to solid-liquid interfaces through the available catechol groups of such films. The mechanism of film formation is, however, not well elucidated, and most investigators use the protocol developed by Messersmith et al. (H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426.) using a dopamine solution at a constant concentration of 2 g L(-1) in the presence of Tris(hydroxymethyl aminomethane) at pH 8.5. A particular finding of this initial study was that the film thickness reaches a constant value (almost substrate independent) of about 40 nm. Herein, we investigate the change in the polydopamine film thickness, morphology, surface energy and electrochemical properties as a function of the concentration of the dopamine solution put in the presence of silicon substrates. As a surprising finding, we observe a constant increase in the maximal film thickness with an increase in the dopamine solution between 0.1 and 5 g L(-1). The surface morphology is also markedly affected by the concentration of the dopamine solution, whereas the different components of the surface energy stay unaffected by the dopamine solution concentration. In addition, electrochemical impedance spectroscopy shows that the higher the initial dopamine concentration, the more rapidly compact and impermeable films are formed. Finally, we propose a model for the deposition of polydopamine films taking all our findings into account. This model relies on a rate equation taking into account both attractive and repulsive interactions between small polydopamine aggregates on the surface and in solution.
聚多巴胺薄膜的形成是通过薄膜中可用的儿茶酚基团将固液界面赋予多功能性的一种流行方法。然而,薄膜形成的机制尚未得到很好的阐明,大多数研究人员使用 Messersmith 等人开发的方案(H. Lee、S.M. Dellatore、W.M. Miller、P.B. Messersmith,Science 318 (2007) 426.),即在 pH 8.5 的 Tris(羟甲基)氨基甲烷存在下,使用浓度为 2 g L(-1) 的多巴胺溶液。这项初步研究的一个特别发现是,薄膜厚度达到约 40nm 的恒定值(几乎与基底无关)。在此,我们研究了聚多巴胺薄膜厚度、形貌、表面能和电化学性质随置于硅基底存在下的多巴胺溶液浓度的变化。令人惊讶的是,我们观察到随着多巴胺溶液浓度在 0.1 到 5 g L(-1) 之间的增加,最大薄膜厚度持续增加。表面形貌也明显受到多巴胺溶液浓度的影响,而表面能的不同组成不受多巴胺溶液浓度的影响。此外,电化学阻抗谱表明,初始多巴胺浓度越高,形成的致密且不可渗透的薄膜越快。最后,我们提出了一个考虑到我们所有发现的聚多巴胺薄膜沉积模型。该模型依赖于一个速率方程,该方程考虑了表面和溶液中小聚多巴胺聚集体之间的吸引力和排斥力。